
~RISC 30/7/25

intro2crypto
RISC{you_thought_lmao}You had to be there for the attendance flag!

Acknowledgment of Country

RISC acknowledges the people of the Woi Wurrung
and Boon Wurrung language groups of the eastern

Kulin Nation on whose unceded lands we conduct the
business of the University and the club. RISC

acknowledges their Ancestors and Elders, past,
present, and emerging

Housekeeping

Housekeeping

• You now have two weeks to solve challenges

Housekeeping

• You now have two weeks to solve challenges

• Solutions are revealed in the next workshop

Housekeeping

• You now have two weeks to solve challenges

• Solutions are revealed in the next workshop

• Will also be on https://writeups.urisc.club

https://writeups.urisc.club

Housekeeping

• You now have two weeks to solve challenges

• Solutions are revealed in the next workshop

• Will also be on https://writeups.urisc.club

• Prizes! (Hopefully)

https://writeups.urisc.club

AI usage

• We can’t stop you using AI

AI usage

• We can’t stop you using AI

• But it doesn’t really teach you anything

AI usage

• We can’t stop you using AI

• But it doesn’t really teach you anything

• There’s a lot of satisfaction in reaching a solution by yourself :^)

AI usage

• We can’t stop you using AI

• But it doesn’t really teach you anything

• There’s a lot of satisfaction in reaching a solution by yourself :^)

• Most modern CTF crypto challenges are beyond what any LLM can handle

AI usage

• We can’t stop you using AI

• But it doesn’t really teach you anything

• There’s a lot of satisfaction in reaching a solution by yourself :^)

• Most modern CTF crypto challenges are beyond what any LLM can handle

• You should learn to “think like an attacker”

AI usage

• We can’t stop you using AI

• But it doesn’t really teach you anything

• There’s a lot of satisfaction in reaching a solution by yourself :^)

• Most modern CTF crypto challenges are beyond what any LLM can handle

• You should learn to “think like an attacker”

• AI will also be utterly useless for future weeks

This week's sponsor

Zellic is a security research firm. Our targets include compilers, virtual
machines, web apps, circuits, proof systems, and more. Before Zellic, we

previously founded perfect blue, the #1 CTF team in 2020 and 2021. If
you're smart and good at CTFs, we'd love to meet you.

We offer a complete benefits package and direct equity participation. We
also offer flexible hours, remote work, and both full-time and part-time roles.

Our team enjoys regular fully-funded offsites and range of other perks.

Ask your friends: you might already know someone who works here.

To learn more, check out our blog: zellic.io/auditooor-grindset

jobs@zellic.io | zellic.io/careers | @gf_256 (discord)

http://zellic.io/auditooor-grindset
mailto:jobs@zellic.io

What is crypto?

What is crypto?

• Imagine you’re passing notes in class.

What is crypto?

• Imagine you’re passing notes in class.

What is crypto?

• Imagine you’re passing notes in class.

• Teacher catches you?

What is crypto?

• Imagine you’re passing notes in class.

• Teacher catches you?

• Little Jimmy snitches?

What is crypto?

• Imagine you’re passing notes in class.

• Teacher catches you?

• Little Jimmy snitches?

• How can we keep our very important 
messages away from prying eyes?

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

• One approach is to shift letters by some amount.

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

• One approach is to shift letters by some amount.

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• NOPQRSTUVWXYZABCDEFGHIJKLM

Shift by 13 letters

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

• One approach is to shift letters by some amount.

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• NOPQRSTUVWXYZABCDEFGHIJKLM

• “u stink” -> “h fgvax"

Shift by 13 letters

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

• One approach is to shift letters by some amount.

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• GHIJKLMNOPQRSTUVWXYZABCDEF

• “u stink” -> “a yzotq”

Shift by 6 letters

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

• One approach is to shift letters by some amount.

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• GHIJKLMNOPQRSTUVWXYZABCDEF

• “u stink” -> “a yzotq”

• Caesar Cipher

Shift by 6 letters

What is crypto?

• Let’s think like a >2000 year old Roman dictator.

• One approach is to shift letters by some amount.

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• GHIJKLMNOPQRSTUVWXYZABCDEF

• “u stink” -> “a yzotq”

• Caesar Cipher

Shift by 6 letters

What is crypto?

• Obviously weak

What is crypto?

• Obviously weak

h fgvax

i ghwby

j hixcz

k ijyda

l jkzeb

m klafc

n lmbgd

o mnche

p nodif

q opejg

r pqfkh

s qrgli

t rshmj

u stink

v tujol

w uvkpm

x vwlqn

y wxmro

z xynsp

a yzotq

b zapur

c abqvs

d bcrwt

e cdsxu

f detyv

g efuzw

What is crypto?

• Obviously weak

h fgvax

i ghwby

j hixcz

k ijyda

l jkzeb

m klafc

n lmbgd

o mnche

p nodif

q opejg

r pqfkh

s qrgli

t rshmj

u stink

v tujol

w uvkpm

x vwlqn

y wxmro

z xynsp

a yzotq

b zapur

c abqvs

d bcrwt

e cdsxu

f detyv

g efuzw

What is crypto?

• Obviously weak

• Requires at most 25 brute force attempts

What is crypto?

• Obviously weak

• Requires at most 25 brute force attempts

• Computationally very cheap

What is crypto?

• Obviously weak

• Requires at most 25 brute force attempts

• Computationally very cheap

• https://gchq.github.io/CyberChef

https://gchq.github.io/CyberChef

Can we do better?

Can we do better?

Of course we can do better there’s at least 50 slides left

Vigenère

• What if we rotated each letter by a different amount?

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "u stink"

• Key: "ABC"

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "u stink"

• Key: "ABC"

0 1 2

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "u stink"

• Key: "ABC"

• 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• A: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• B: BCDEFGHIJKLMNOPQRSTUVWXYZA

• C: CDEFGHIJKLMNOPQRSTUVWXYZAB

(0)

(1)

(2)

(0)

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "u stink"

• Key: "ABCABC"

• 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• A: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• B: BCDEFGHIJKLMNOPQRSTUVWXYZA

• C: CDEFGHIJKLMNOPQRSTUVWXYZAB

(0)

(0)

(1)

(2)

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "ustink"

• Key: "ABCABC"

• 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• A: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• B: BCDEFGHIJKLMNOPQRSTUVWXYZA

• C: CDEFGHIJKLMNOPQRSTUVWXYZAB

(0)

(0)

(1)

(2)

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "ustink"

• Key: "ABCABC"

• 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• A: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• B: BCDEFGHIJKLMNOPQRSTUVWXYZA

• C: CDEFGHIJKLMNOPQRSTUVWXYZAB

(0)

(0)

(1)

(2)

utviom

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "ustink"

• Key: "ABCABC"

• 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• A: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• B: BCDEFGHIJKLMNOPQRSTUVWXYZA

• C: CDEFGHIJKLMNOPQRSTUVWXYZAB

(0)

(0)

(1)

(2)

utviom

Vigenère

• But is this more secure?

Vigenère

• But is this more secure?

• We can't brute force...

Vigenère

• But is this more secure?

• We can't brute force...

• We would have to guess the whole key, right?

Vigenère

• But is this more secure?

• We can't brute force...

• We would have to guess the whole key, right?

• So it's secure!

Vigenère

• But is this more secure?

• We can't brute force...

• We would have to guess the whole key, right?

• So it's secure!

Vigenère

• But is this more secure?

• We can't brute force...

• We would have to guess the whole key, right?

• So it's secure!

• Or is it...

Thought experiment

Thought experiment

If, for some Vigenère cipher:

• We know the key length is N

• We know N consecutive characters in the message

Can the cipher be broken? How?

Vigenère

• What if we rotated each letter by a different amount?

• Plaintext: "ustink"

• Key: "ABCABC"

• 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• A: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• B: BCDEFGHIJKLMNOPQRSTUVWXYZA

• C: CDEFGHIJKLMNOPQRSTUVWXYZAB

(0)

(0)

(1)

(2)

utviom

Vigenère
ETAOINSHRDLU

• All languages have a letter frequency distribution

Vigenère
ETAOINSHRDLU

• All languages have a letter frequency distribution

• Let's consider the simpler case:

• monoalphabetic substitution cipher

Vigenère
ETAOINSHRDLU

• All languages have a letter frequency distribution

• Let's consider the simpler case:

• monoalphabetic substitution cipher

• A->X, B->D, C->W, D->J, ...

Vigenère
ETAOINSHRDLU

• All languages have a letter frequency distribution

• Let's consider the simpler case:

• monoalphabetic substitution cipher

• A->X, B->D, C->W, D->J, ...

• The most common letters in English are ETAOINSHRDLU (in order)

Vigenère
ETAOINSHRDLU

• All languages have a letter frequency distribution

• Let's consider the simpler case:

• monoalphabetic substitution cipher

• A->X, B->D, C->W, D->J, ...

• The most common letters in English are ETAOINSHRDLU (in order)

• The most frequent letters in the ciphertext are probably those in order too!

Vigenère
ETAOINSHRDLU

• All languages have a letter frequency distribution

• Let's consider the simpler case:

• monoalphabetic substitution cipher

• A->X, B->D, C->W, D->J, ...

• The most common letters in English are ETAOINSHRDLU (in order)

• The most frequent letters in the ciphertext are probably those in order too!

• Fails with small messages, but with scale this becomes very precise

Thought experiment #2

Thought experiment #2
If, for some Vigenère cipher:

• We know the length of the key

• The key is repeated some number of times

• The message is sufficiently long

• The message is in English

Can the cipher be broken? How?

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• 0, 4, 8, 12, 16, …

• 1, 5, 9, 13, 17, …

• 2, 6, 10, 14, 18, …

• 3, 7, 11, 15, 19, …

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• 0, 4, 8, 12, 16, …

• 1, 5, 9, 13, 17, …

• 2, 6, 10, 14, 18, …

• 3, 7, 11, 15, 19, …

R

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• 0, 4, 8, 12, 16, …

• 1, 5, 9, 13, 17, …

• 2, 6, 10, 14, 18, …

• 3, 7, 11, 15, 19, …

I

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• 0, 4, 8, 12, 16, …

• 1, 5, 9, 13, 17, …

• 2, 6, 10, 14, 18, …

• 3, 7, 11, 15, 19, …

S

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• 0, 4, 8, 12, 16, …

• 1, 5, 9, 13, 17, …

• 2, 6, 10, 14, 18, …

• 3, 7, 11, 15, 19, …

C

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• Each column represents part of the message that was encrypted with 1 letter

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• Each column represents part of the message that was encrypted with 1 letter

• 4 Caesar ciphers

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• Each column represents part of the message that was encrypted with 1 letter

• 4 Caesar ciphers

• Brute forcing is still hard, but we can use frequency analysis

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• Each column represents part of the message that was encrypted with 1 letter

• 4 Caesar ciphers

• Brute forcing is still hard, but we can use frequency analysis

• Reduces attack from 26^N to 26*N for key of length N

Vigenère
Frequency Analysis with known key length

• Say we have a 4 letter key, RISC

• We can rearrange our ciphertext into 4 columns

• Each column represents part of the message that was encrypted with 1 letter

• 4 Caesar ciphers

• Brute forcing is still hard, but we can use frequency analysis

• Reduces attack from 26^N to 26*N for key of length N

• In this case, 456,976 to 104

Thought experiment #3

Thought experiment #3
If, for some Vigenère cipher:

• The key is longer than the message

• The key is truly random

• The key is never reused

Can the cipher still be broken? How?

Vigenère
OTP

• If the key is longer than the message

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

• Even if some of the plaintext is known (say, you always start with “Dear X”)

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

• Even if some of the plaintext is known (say, you always start with “Dear X”)

• No information about the rest of the message is recovered

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

• Even if some of the plaintext is known (say, you always start with “Dear X”)

• No information about the rest of the message is recovered

• This was actually how cold-war spies received orders from HQ!

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

• Even if some of the plaintext is known (say, you always start with “Dear X”)

• No information about the rest of the message is recovered

• This was actually how cold-war spies received orders from HQ!

• Further reading: Number Stations

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

• Even if some of the plaintext is known (say, you always start with “Dear X”)

• No information about the rest of the message is recovered

• This was actually how cold-war spies received orders from HQ!

• Further reading: Number Stations ALLEGEDLY

Vigenère
OTP

• If the key is longer than the message

• And the key is never used more than once

• Perfect secrecy has been achieved!

• Even if some of the plaintext is known (say, you always start with “Dear X”)

• No information about the rest of the message is recovered

• This was actually how cold-war spies received orders from HQ!

• Further reading: Number Stations
Probably still in use today by 
some countries, but this is pure 
speculation

But how do you exchange the key?

XOR
Winding forward ~500 years

XOR
Winding forward ~500 years

• Encrypting only letters isn’t super useful

XOR
Winding forward ~500 years

• Encrypting only letters isn’t super useful

• Maybe we want:

• Numbers

XOR
Winding forward ~500 years

• Encrypting only letters isn’t super useful

• Maybe we want:

• Numbers

• Uppercase/lowercase

XOR
Winding forward ~500 years

• Encrypting only letters isn’t super useful

• Maybe we want:

• Numbers

• Uppercase/lowercase

• Special characters

XOR
Winding forward ~500 years

• Encrypting only letters isn’t super useful

• Maybe we want:

• Numbers

• Uppercase/lowercase

• Special characters

• The full range of a byte? (0-255)

XOR
Winding forward ~500 years

• Bitwise operation

XOR
Winding forward ~500 years

• Bitwise operation

• Super fast on modern CPUs (ancient ones too)

XOR
Winding forward ~500 years

• Bitwise operation

• Super fast on modern CPUs (ancient ones too)

• 1 clock cycle

XOR
Winding forward ~500 years

• Bitwise operation

• Super fast on modern CPUs (ancient ones too)

• 1 clock cycle

• Properties that make it useful for crypto

XOR
Winding forward ~500 years

• Bitwise operation

• Super fast on modern CPUs (ancient ones too)

• 1 clock cycle

• Properties that make it useful for crypto

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Winding forward ~500 years

• Bitwise operation

• Super fast on modern CPUs (ancient ones too)

• 1 clock cycle

• Properties that make it useful for crypto

• Balanced outputs (AND has 3 0’s, OR has 3 1’s)

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

• A ⊕ (B ⊕ B) = A

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

• A ⊕ (B ⊕ B) = A

• A ⊕ () = A

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

• A ⊕ B = C ⇒ A = B ⊕ C

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

• A ⊕ B = C ⇒ A = B ⊕ C

• A ⊕ B ⊕ B = C ⊕ B

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

• A ⊕ B = C ⇒ A = B ⊕ C

• A = C ⊕ B

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Involution

• XOR is it’s own inverse

• (A ⊕ B) ⊕ B = A

• A ⊕ B = C ⇒ A = B ⊕ C

• NB: We use ⊕ to represent XOR in slides

• You will see ^ used in code to represent the same operation

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

XOR
Cryptography

• If we have some message M

XOR
Cryptography

• If we have some message M

• And some key K

XOR
Cryptography

• If we have some message M

• And some key K

• We can obtain ciphertext C = M ⊕ K

XOR
Cryptography

• If we have some message M

• And some key K

• We can obtain ciphertext C = M ⊕ K

• And we can decrypt with M = C ⊕ K

XOR
Cryptography

• If we have some message M

• And some key K

• We can obtain ciphertext C = M ⊕ K

• And we can decrypt with M = C ⊕ K

• Question: Do you notice any similarities to Vigenère here? Do the same
attacks work?

Thought experiment #4

Thought experiment #4

How is XOR encryption similar to Vigenère?

Do the same attacks work?

What new attacks emerge?

XOR

• Same problems as Vigenère

XOR

XOR

• Same problems as Vigenère

• Column frequency analysis

XOR

• Same problems as Vigenère

• Column frequency analysis

• Small key brute force

XOR

• Same problems as Vigenère

• Column frequency analysis

• Small key brute force

• Key distribution

XOR

• Same problems as Vigenère

• Column frequency analysis

• Small key brute force

• Key distribution

XOR

• Same problems as Vigenère

• Column frequency analysis

• Small key brute force

• Key distribution (unless you’re a cold war era spy)

RSA

• Finding factors of numbers isn’t really fun

RSA

• Finding factors of numbers isn’t really fun

• In fact, it’s not fun for computers either

RSA

• Finding factors of numbers isn’t really fun

• In fact, it’s not fun for computers either

• While 64 bit numbers can be factored incredibly fast…

RSA

• Finding factors of numbers isn’t really fun

• In fact, it’s not fun for computers either

• While 64 bit numbers can be factored incredibly fast…

• … what about 2048 bits? 4096? 8192?

RSA

• Finding factors of numbers isn’t really fun

• In fact, it’s not fun for computers either

• While 64 bit numbers can be factored incredibly fast…

• … what about 2048 bits? 4096? 8192?

• It get’s even worse if the number is the product of two N bit primes!

RSA

• Finding factors of numbers isn’t really fun

• In fact, it’s not fun for computers either

• While 64 bit numbers can be factored incredibly fast…

• … what about 2048 bits? 4096? 8192?

• It get’s even worse if the number is the product of two N bit primes!

• Can’t divide by 2, 3, 5, 7, …

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

*on a
classical 
computer

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

• Generally assumed to be NP

• Hard to find a solution

*on a
classical 
computer

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

• Generally assumed to be NP

• Hard to find a solution

• Easy to verify a solution

*on a
classical 
computer

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

• Generally assumed to be NP

• Hard to find a solution (hard to find factors of a given number)

• Easy to verify a solution (easy to check if A and B are factors of a number)

*on a
classical 
computer

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

• Generally assumed to be NP

• Hard to find a solution (hard to find factors of a given number)

• Easy to verify a solution (easy to check if A and B are factors of a number)

• If you disagree…

*on a
classical 
computer

RSA
Integer Factorisation

• Unsolved problem - “Can an integer be factored in polynomial time”

• Generally assumed to be NP

• Hard to find a solution (hard to find factors of a given number)

• Easy to verify a solution (easy to check if A and B are factors of a number)

• If you disagree…

*on a
classical 
computercb 12 fd 3b 32 8c 65 17 ff 39 2f 25 27 e3 80 ba

bf d7 e4 5f 9a 65 a9 96 70 96 ef f9 49 36 79 97
e4 22 23 4c 9d af 5b 27 56 ef 6a 36 3f 4a 5d d1
44 fb 5d ca 21 7a f3 7c 39 cb ab 07 1c 6a ec 2c
21 64 37 1d 16 11 73 3f 7e 1f 68 a9 ea b5 bd 7a
05 6d 38 05 8d ef ee 23 1c e2 cf ec aa 22 d9 4e
84 47 38 c2 cd bc 1b 72 51 a3 64 46 f0 55 95 57
ee de 87 db 39 96 57 c0 42 58 1b 48 bc 5c 79 20
d9 96 4e e9 49 86 67 78 4f fe 4b 66 b0 f6 7d b9
e7 07 de c6 da d8 20 96 65 a0 de 4e a0 c4 76 f3
41 e7 e4 de c0 32 47 8d 5f a9 96 09 b8 46 5e e8
c0 3e d1 d0 69 e8 4c 26 3c 8e 69 1c 01 eb 61 ec
ec 77 f0 e9 c2 fe 2a bf 8d 68 c2 1a 55 7d 61 ac
85 c8 f7 16 e2 a0 73 97 ff 26 5c 05 38 e6 e1 a7
89 13 d6 ac 13 aa 7e 44 87 83 07 ab f2 da a6 cf
38 a7 6b cb 17 07 62 08 a9 10 8e 58 8d 73 c6 e9

^Bank of America’s public key.

RSA
Integer Factorisation

• RSA’s security relies on the fact that factoring is hard

RSA
Integer Factorisation

• RSA’s security relies on the fact that factoring is hard

• Current record is factoring a 795-bit number on specialised hardware

RSA
Integer Factorisation

• RSA’s security relies on the fact that factoring is hard

• Current record is factoring a 795-bit number on specialised hardware

• A lot of smaller numbers (<128 bit) have known factors on FactorDB.com

RSA
Integer Factorisation

• RSA’s security relies on the fact that factoring is hard

• Current record is factoring a 795-bit number on specialised hardware

• A lot of smaller numbers (<128 bit) have known factors on FactorDB.com

• How do we go from factoring -> encryption?

http://FactorDB.com

The next bit is math heavy
(sorry)

RSA
Modular Arithmetic - Intuition

• It’s 18:00 right now. What time will it be in 219 hours?

RSA
Modular Arithmetic - Intuition

• It’s 18:00 right now. What time will it be in 219 hours?

• Hard way:

• Add 6 hours -> midnight, 13 hours left

• Add 12 hours -> midday, 1 hour left

• … repeat many, many, many times

• Add remainder -> 9PM / 21:00

• Answer: 9PM / 21:00

RSA
Modular Arithmetic - Intuition

• It’s 18:00 right now. What time will it be in 219 hours?

• Easy way:

• 18 + 219 -> 237

• We want an answer in [0,24), so divide by 24 and get the remainder

• 237 / 24 = 9 r21

• Answer: 9PM / 21:00

RSA
Modular Arithmetic

• System of arithmetic where values wrap around after a certain value
(modulus)

RSA
Modular Arithmetic

• System of arithmetic where values wrap around after a certain value
(modulus)

• In our time example, the modulus would be 24 (or 12 for AM/PM format)

RSA
Modular Arithmetic

• System of arithmetic where values wrap around after a certain value
(modulus)

• In our time example, the modulus would be 24 (or 12 for AM/PM format)

• Alternatively: “Remainder of division”

• 237 mod 24 → 237 / 24 = 9 r21

• 237 mod 24 ≡ 21

RSA
Modular Arithmetic

• Only defined for the integers, ℤ

RSA
Modular Arithmetic

• Only defined for the integers, ℤ

• Inherits associativity, commutativity, distributivity, …

RSA
Modular Arithmetic

• Only defined for the integers, ℤ

• Inherits associativity, commutativity, distributivity, …

• (a + b) mod n ⇔ (b + a) mod n

RSA
Modular Arithmetic

• Only defined for the integers, ℤ

• Inherits associativity, commutativity, distributivity, …

• (a + b) mod n ⇔ (b + a) mod n

• a mod n * b mod n ⇔ (a * b) mod n

RSA
Modular Arithmetic

• Only defined for the integers, ℤ

• Inherits associativity, commutativity, distributivity, …

• (a + b) mod n ⇔ (b + a) mod n

• a mod n * b mod n ⇔ (a * b) mod n

• Division is not defined

RSA
Asleep yet?

• 8 + 11 mod 13 ≡ ?

• 9 * 8 mod 11 ≡ ?

• 28,472 mod 1,824,792 ≡ ?

RSA
Asleep yet?

• 8 + 11 mod 13 ≡ 6

• 9 * 8 mod 11 ≡ 6

• 28,472 mod 1,824,792 ≡ 28,472

RSA
Asleep yet?

• 8 + 11 mod 13 ≡ 6

• 9 * 8 mod 11 ≡ 6

• 28,472 mod 1,824,792 ≡ 28,472

8 + 11 = 19 
19 mod 13 ≡ 6 
19/13 = 1 r6

RSA
Asleep yet?

• 8 + 11 mod 13 ≡ 6

• 9 * 8 mod 11 ≡ 6

• 28,472 mod 1,824,792 ≡ 28,472

9 * 8 = 72 
72 mod 11 ≡ 6 
72/11 = 6 r6

RSA
Asleep yet?

• 8 + 11 mod 13 ≡ 6

• 9 * 8 mod 11 ≡ 6

• 28,472 mod 1,824,792 ≡ 28,472

28,472 mod 1,824,792 ≡ 28,472 
28,472/1,824,792 = 0 r28,472

RSA
Modular Multiplicative Inverse

• In normal math, x-1x = 1

• Since x-1x ⇔ x/x

RSA
Modular Multiplicative Inverse

• In normal math, x-1x = 1

• Since x-1x ⇔ x/x

• This also holds in modular arithmetic, but…

RSA
Modular Multiplicative Inverse

• In normal math, x-1x = 1

• Since x-1x ⇔ x/x

• This also holds in modular arithmetic, but…

• What is x-1 in modular arithmetic?

RSA
Modular Multiplicative Inverse

• In normal math, x-1x = 1

• Since x-1x ⇔ x/x

• This also holds in modular arithmetic, but…

• What is x-1 in modular arithmetic?

• 1/x isn’t defined, since division isn’t defined…

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

• a=1 ⇒ 1 * 3 ≡ 3 mod 7

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

• a=2 ⇒ 2 * 3 ≡ 6 mod 7

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

• a=3 ⇒ 3 * 3 ≡ 2 mod 7

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

• a=4 ⇒ 4 * 3 ≡ 5 mod 7

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

• a=5 ⇒ 5 * 3 ≡ 1 mod 7

RSA
Modular Multiplicative Inverse

• In modular arithmetic, x-1 is some a such that:

• ax ≡ 1 mod m

• Example:

• x = 3, m = 7, a = ?

• a=5 ⇒ 5 * 3 ≡ 1 mod 7

• The inverse of 3 mod 7 is 5

Thought experiment #5

Thought experiment #5

Does a multiplicative inverse always exist?

 
If not, under what circumstances does it exist?

How could you find the inverse faster?

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

The largest number that 
evenly divides both x and m is 1

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

The largest number that 
evenly divides both x and m is 1

If x = 4, m = 2, gcd(x,m) = 2

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

The largest number that 
evenly divides both x and m is 1

If x = 7, m = 2, gcd(x,m) = 1

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

The largest number that 
evenly divides both x and m is 1

If x = 7, m = 14, gcd(x,m) = 7

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

• Can find using Extended Euclidean Algorithm

• Solves a, y, for ax + my = 1

RSA
Finding inverses

• MMI only exists iff gcd(x, m) = 1

• Can find using Extended Euclidean Algorithm

• Solves a, y, for ax + my = 1

• How/why EEA works is an exercise for the reader (and not super important)

But how does RSA actually work?

RSA
Key Pairs

• Let’s generate two prime numbers (call them P and Q)

RSA
Key Pairs

• Let’s generate two prime numbers (call them P and Q)

• The product of the two, N=PQ, is the Public Key (encryption key)

RSA
Key Pairs

• Let’s generate two prime numbers (call them P and Q)

• The product of the two, N=PQ, is the Public Key (encryption key)

• Private Key (D) (decryption key) and Public Exponent (E) are calculated as:

• φ(N) = (P - 1)(Q - 1)

• E is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

• D ≡ E-1 mod φ(N)

RSA
Key Pairs

• Let’s generate two prime numbers (call them P and Q)

• The product of the two, N=PQ, is the Public Key (encryption key)

• Private Key (D) (decryption key) and Public Exponent (E) are calculated as:

• φ(N) = (P - 1)(Q - 1)

• E is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

• D ≡ E-1 mod φ(N)

Known values

Entire cryptosystem relies on the 
secrecy of the primes P and Q

Thought experiment #6

Thought experiment #6
If I give you φ(N) and N, can you recover P and Q? 
φ(N)=201,100,838,400

N=201,140,760,239 
 
Reminder: φ(N)=(P - 1)(Q - 1) 
N = P * Q

RSA

• No answers for this thought experiment!

RSA

• No answers for this thought experiment!

• “Factoring Phi” flag is RISC{<P>_<Q>}

RSA

• No answers for this thought experiment!

• “Factoring Phi” flag is RISC{<P>_<Q>}

• glhf :^)

RSA
Encryption/Decryption

• We have N, D, and E

RSA
Encryption/Decryption

• We have N, D, and E

• N: Public Key (encryption key)

• D: Private Key (decryption key)

• E: Public Exponent

RSA
Encryption/Decryption

• We have N, D, and E

• N: Public Key (encryption key)

• D: Private Key (decryption key)

• E: Public Exponent

• To encrypt:	 c ≡ mE mod N

RSA
Encryption/Decryption

• We have N, D, and E

• N: Public Key (encryption key)

• D: Private Key (decryption key)

• E: Public Exponent

• To encrypt:	 c ≡ mE mod N

• To decrypt:	 m ≡ cD mod N

RSA
Encryption/Decryption

• We have N, D, and E

• N: Public Key (encryption key)

• D: Private Key (decryption key)

• E: Public Exponent

• To encrypt:	 c ≡ mE mod N

• To decrypt:	 m ≡ cD mod N

It just works, don’t need to bother remembering why

Thought experiment #7

Thought experiment #7
What is the largest m that may be encrypted with 
some public key n? 

What if m exceeds this value?

 
As a reminder: 
c≡me (mod n) 
m≡cd (mod n)

RSA
Exponent

• From earlier: e is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

RSA
Exponent

• From earlier: e is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

• English: we select e between 1 and φ(N) that shares no factors with φ(N)

RSA
Exponent

• From earlier: e is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

• English: we select e between 1 and φ(N) that shares no factors with φ(N)

• e is almost always in practice going to be 65537

RSA
Exponent

• From earlier: e is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

• English: we select e between 1 and φ(N) that shares no factors with φ(N)

• e is almost always in practice going to be 65537

• Other (less so) popular values are 3, 5, 17, 257

RSA
Exponent

• From earlier: e is picked s.t. 1 < e < φ(N) and gcd(e, φ(N)) = 1

• English: we select e between 1 and φ(N) that shares no factors with φ(N)

• e is almost always in practice going to be 65537

• Other (less so) popular values are 3, 5, 17, 257

• Fermat primes: 22^k+1

Thought experiment #8

Thought experiment #8
Why are Fermat Primes of the form 22^k+1 useful 
as values of the public exponent?

Why would I prefer e=65537 over e=65407?

Assume 1 < e < φ(N) and gcd(e, φ(N)) = 1 
in both cases

RSA
Side tangent: Why Fermat primes (22^k+1)?

• 65537: 0b10000000000000001

RSA
Side tangent: Why Fermat primes (22^k+1)?

• 65537: 0b10000000000000001

• 65407: 0b01111111101111111

RSA
Side tangent: Why Fermat primes (22^k+1)?

• 65537: 0b10000000000000001

• 65407: 0b01111111101111111

RSA
Side tangent: Why Fermat primes (22^k+1)?

• 65537: 0b10000000000000001

• 65407: 0b01111111101111111

RSA
Side tangent: Why Fermat primes (22^k+1)?

• 65537: 0b10000000000000001

• 65407: 0b01111111101111111

Implementation details are 
important in crypto!

Thought experiment #8

Thought experiment #8
We already know that a small modulus (small n) 
is weak, as it can be easily factored. 
 
What about if the public exponent is super low? 
What if e=3? 
 
How would this affect the security of RSA? 
 
As a reminder: 
c≡me (mod n)

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

• If e and m are small, and n is large, then:

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

• If e and m are small, and n is large, then:

• me < n

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

• If e and m are small, and n is large, then:

• me < n -> c=me

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

• If e and m are small, and n is large, then:

• me < n -> c=me

• m=c1/e

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

• If e and m are small, and n is large, then:

• m3 < n -> c=m3

• m=c1/3

RSA
Exponent

• 28,472 mod 1,824,792 ≡ 28,472

• If value is less than modulus, the modulus has not changed anything

• c≡me (mod n)

• What if me is less than n?

• If e and m are small, and n is large, then:

• m3 < n -> c=m3

• m=c1/3

Further reading: 
- Coppersmith’s attack 
- Håstad’s attack

No more math!

Further down the rabbit hole

• We’ve only really scratched the surface of things

Further down the rabbit hole

• We’ve only really scratched the surface of things

• PRNGs, stream ciphers, oracle attacks, partial leaks, side channels…

Further down the rabbit hole

• We’ve only really scratched the surface of things

• PRNGs, stream ciphers, oracle attacks, partial leaks, side channels…

• There is not enough time in this workshop to cover everything :(

Further down the rabbit hole

• We’ve only really scratched the surface of things

• PRNGs, stream ciphers, oracle attacks, partial leaks, side channels…

• There is not enough time in this workshop to cover everything :(

• Some challenges this week will require you to investigate some of these

• Feel free to ask questions in the discord

Further down the rabbit hole

• We’ve only really scratched the surface of things

• PRNGs, stream ciphers, oracle attacks, partial leaks, side channels…

• There is not enough time in this workshop to cover everything :(

• Some challenges this week will require you to investigate some of these

• Feel free to ask questions in the discord

• As long as they’re generic in nature

“Wisdom”

• Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

“Wisdom”

• Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

• Some advice: the road of learning is long and windy and complicated at times

“Wisdom”

• Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

• Some advice: the road of learning is long and windy and complicated at times

• Celebrate the milestones along the way!

“Wisdom”

• Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

• Some advice: the road of learning is long and windy and complicated at times

• Celebrate the milestones along the way!

• Easy to get overwhelmed

“Wisdom”

• Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

• Some advice: the road of learning is long and windy and complicated at times

• Celebrate the milestones along the way!

• Easy to get overwhelmed

• CTF should be about having fun, not stressing because you are stuck

Go get some flags

https://ctf.urisc.club

https://ctf.urisc.club

