o Zellic

Intro2crypto

You had to be there for the attendance flag!
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* You now have two weeks to solve challenges
e Solutions are revealed in the next workshop

* Will also be on https://writeups.urisc.club

* Prizes! (Hopefully)
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Al usage

 We can’t stop you using Al

 But it doesn’t really teach you anything

* There’s a lot of satisfaction in reaching a solution by yourself : /)

 Most modern CTF crypto challenges are beyond what any LLM can handle
e You should learn to “think like an attacker”

* Al will also be utterly useless for future weeks
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Zellic is a security research firm. Our targets include compilers, virtual
machines, web apps, circuits, proof systems, and more. Before Zellic, we
previously founded perfect blue, the #1 CTF team in 2020 and 2021. If
you're smart and good at CTFs, we'd love to meet you.

We offer a complete benefits package and direct equity participation. We
also offer flexible hours, remote work, and both full-time and part-time roles.
Our team enjoys regular fully-funded offsites and range of other perks.

Ask your friends: you might already know someone who works here.

To learn more, check out our blog: zellic.io/auditooor-grindset

jobs@zellic.io | zellic.io/careers | @gf_256 (discord)
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What is crypto?

* |Imagine you’re passing notes in class.
* Teacher catches you?
o Little Jimmy snitches?

« How can we keep our very important
messages away from prying eyes?
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What is crypto?

e [ et’s think like a >200

 One approach is to st

e ABCD

* GHIJKLMNOPQRST!

* “u stink™ -> "a yzotq”

EEFGH

 JKLMN

v

 Caesar Cipher
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* Obviously weak
 Requires at most 25 brute force attempts
 Computationally very cheap

e https://gchq.qgithub.io/CyberChef
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Can we do better?

Of course we can do better there’s at least 50 slides left
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e Plaintext: "ustink"

» utviom
o Key: "ABCABC"
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* But is this more secure?

 We can't brute force...

* We would have to guess the whole key, right?
* So it's secure!

e Orisit...
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Thought experiment

If, for some Vigenere cipher:
 We know the key length is N
 We know N consecutive characters in the message

Can the cipher be broken? How?



Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: .tin.

o Key:

= Utvio

e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (O
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* All languages have a letter frequency distribution ——0—0— |
ETAQIN! SHRDLU! CMFWYP!
| _ ] New York,suly 18.—Here are two
* | et's consider the simpler case: reasons why bailiffs, judges, prosecu-
tors and court stenographers dia
. . . . YOUNE.
* monoalphabetic substitution cipher John Ziampettisledibetci was fined
$1 for owning an unmuzzled dog.
Robert Tyzyczhowzswiski is aske
o A->X, B->D, C'>W, D->J, ing the court to change his cogno-

I1eln.

 The most common letters in English are ETAOINSHRDLU (in order)

 The most frequent letters in the ciphertext are probably those in order too!

* Fails with small messages, but with scale this becomes very precise
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Thought experiment #2

If, for some Vigenere cipher:

 We know the length of the key

* The key Is repeated some number of times
 The message is sufficiently long

 The message is in English

Can the cipher be broken? How?
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Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns

 Each column represents part of the message that was encrypted with 1 letter
4 Caesar ciphers

* Brute forcing is still hard, but we can use frequency analysis

 Reduces attack from 26N to 26*N for key of length N
e |n this case, 456,976 to 104
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Thought experiment #3

If, for some Vigenere cipher:

* The key Is longer than the message
 The key is truly random

* The key Is never reused

Can the cipher still be broken? How?
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* |f the key Is longer than the message

 And the key Is never used more than once

* Perfect secrecy has been achieved!

 Even if some of the plaintext is known (say, you always start with “Dear X”)
* No information about the rest of the message is recovered

* This was actually how cold-war spies received orders from HQ!

. _ Probably still in use today by
e Further reading: Number Stations some countries, but this is pure

speculation
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XOR

Winding forward ~500 years

* Encrypting only letters isn’t super useful
 Maybe we want:

 Numbers

 Uppercase/lowercase

e Special characters

* The full range of a byte? (0-255)
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XOR

Winding forward ~500 years

» Bitwise operation

e Super fast on modern CPUs (ancient ones too)
* 1 clock cycle

* Properties that make it useful for crypto

e Balanced outputs (AND has 3 0’s, OR has 3 1’s)
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0 0 0

0 1 1

1 0 1

1 1 0
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XOR ’

Involution
A B Output
e XOR is it’s own Iinverse
0 0 0
c AeoB)@eaB=A
c AoB=C=>A=BaC ’ 1 1

e A=Co®B 1 0




XOR

Involution

A
e XOR is it’'s own inverse .
c AeoB)@eaB=A
- AoB=C=>A=BoC ’

* NB: We use @ to represent XOR in slides 3

* You will see N used In code to represent the same operation
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XOR

Cryptography

* |f we have some message M
* And some key K
 We can obtain ciphertext C=M @ K

 And we can decrypt withM =C & K

e Question: Do you notice any similarities to Vigenere here? Do the same
attacks work"?
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Thought experiment #4

How is XOR encryption similar to Vigenere?
Do the same attacks work?

What new attacks emerge”?
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XOR

e Same problems as Vigenere
 Column frequency analysis
 Small key brute force

» Key distribution (unless you’re a cold war era spy)
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* Finding factors of numbers isn’t really fun

e |n fact, it’s not fun for computers either

 While 64 bit numbers can be factored incredibly fast...

* ... what about 2048 bits? 40967 81927

* |t get’s even worse if the number is the product of two N bit primes!

e Can’tdivide by 2, 3, 5, 7, ...
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* Unsolved problem - “Can an integer be factored in polynomial time”
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Integer Factorisation classical
computer

* Unsolved problem - “Can an integer be factored in polynomial time”
* (Generally assumed to be NP
 Hard to find a solution (hard to find factors of a given number)

* Easy to verify a solution (easy to check if A and B are factors of a number)

* |f you disagree...
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Integer Factorisation

 RSA’s security relies on the fact that factoring is hard
* Current record is factoring a 795-bit number on specialised hardware

* A lot of smaller numbers (<128 bit) have known factors on FactorDB.com

« How do we go from factoring -> encryption?


http://FactorDB.com

o Zellic

The next bit Is math heavy

(sorry)
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RSA

Modular Arithmetic - Intuition

* |t’s 18:00 right now. What time will it be in 219 hours?
 Hard way:

 Add 6 hours -> midnight, 13 hours left

 Add 12 hours -> midday, 1 hour left

e ... repeat many, many, many times

* Add remainder -> 9PM / 21:00

* Answer: 9PM / 21:00
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Modular Arithmetic - Intuition

* |t’s 18:00 right now. What time will it be in 219 hours?
 Easy way:
¢ 18 + 219 -> 237
 We want an answer in [0,24), so divide by 24 and get the remainder
o 237 /24 =9 r21
* Answer: 9PM / 21:00
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RSA

Modular Arithmetic

o System of arithmetic where values wrap around after a certain value
(modulus)

* |n our time example, the modulus would be 24 (or 12 for AM/PM format)

o Alternatively: “Remainder of division”
e 237 mod 24 — 237 /24 =9 r21
e 237 mod 24 = 21
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Modular Arithmetic

* Only defined for the integers, 7
* |nherits associativity, commutativity, distributivity, ...

e @+b)modne (b+a modn
e amodn*bmodn<& (a”*b) modn

 Division is not defined
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e 8+ 11 mod 13 =7
e 9*"8mod 11 =7
e 28,472 mod 1,824,792 = 7



o Zellic

RSA

Asleep yet?

e 8+11mod13 =06
e 978 mod 11 =0
e 28,472 mod 1,824,792 = 28,472
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Asleep yet?

|8+ 11 mod 13 =6 8+ 11 =19
19 mod 13 =6

e 9*8mod 11 =6 19/13 =116

o 28,472 mod 1,824,792 = 28,472
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Asleep yet?

« 8+11mod 13 =6 978 =172
/2mod 11 =06

198 mod 11 =6 72/11 =616

o 28,472 mod 1,824,792 = 28,472
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Asleep yet?

* 8+11mod 13 =6 28,472 mod 1,824,792 = 28,472

28,472/1,824,792 =0r28,472
e 98 mMod11 =06

128,472 mod 1,824,792 = 28,472
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Modular Multiplicative Inverse

e |n normal math, x-1x = 1

e Since X 1x & Xx/X

 This also holds in modular arithmetic, but...
e What is x-1in modular arithmetic?

e 1/x isn’t defined, since division isn’t defined...
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Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e g=1=17*83 = mod 7/
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Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=2=2"3=6mod 7



o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=3=3"3=2mod 7
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Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=4=4"3=5mod 7
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Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=5=5"3=1mod 7
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Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=5=5"3=1mod 7

e Theinverseof3mod7is5
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Thought experiment #5

Does a multiplicative inverse always exist?

If not, under what circumstances does it exist?

How could you find the inverse faster?
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FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

Ifx =4, m=2, gcd(x,m) =2
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FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

If x =7, m=2, gcd(x,m) =1
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FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

fx=7,m=14,gcd(x,m) =7
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* Can find using Extended Euclidean Algorithm

* Solves a, y, forax + my =1
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FiInding Inverses

 MMI only exists iff gcd(x, m) = 1
* Can find using Extended Euclidean Algorithm
* Solves a, y, forax + my =1

« How/why EEA works is an exercise for the reader (and not super important)
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But how does RSA actually work?
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Key Pairs

* Let’s generate two prime numbers (call them P and Q)

* The product of the two, N=PQ), is the Public Key (encryption key)

* Private Key (D) (decryption key) and Public Exponent (E) are calculated as:
* d(N) = (P -1)Q-1)
 Eispickeds.t. 1 <e < ®(N)and gcd(e, d(N)) = 1
e D=E1Tmod ¢(N)
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Key Pairs

Known values

* Let’s generate two prime numbers_ (cati-them P and Q)

* The product of the tWO, 1S the Public Key (encryption key)

* Private Key (D) (decryption key) and Public Exponentare calculated as:

+ o(N) =P} 1)@l 1)

 E Is picked s.T.

N) and gcd(e, d(N)) = 1

e D=E"mod ¢(N) Entire cryptosystem relies on the

secrecy of the primes P and Q
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Thought experiment #6

If | give you ®(N) and N, can you recover P and Q?
d(N)=201,100,838,400

N=201,140,/60,239

Reminder: p(N)=(P - 1)(Q - 1)
N=P*Q
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+ “Factoring Phi” flag is RISC{<P>_<Q>)



o Zellic

RSA

 No answers for this thought experiment!
* “Factoring Phi” flag is RISC{<P>_<Q>}
e glhf :A)
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Encryption/Decryption

e We have N, D, and E
* N: Public Key (encryption key)
* D: Private Key (decryption key)
 E: Public Exponent

* Jo encrypt: c = mEmod N

e [o decrypt: m = cP mod N

Zellic
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Proof using Fermat's little theorem |ecudit]

E n CI y ti 0 n/D e CI y ti 0 n The proof of the correctness of RSA is based on Fermat's little theorem, stating that a” ~ I=1 (mod p) for any integer a and prime p,
p p not dividing a.["°%¢ 1]

We want to show that

(m)* =m (mod pa)

for every integer m when p and g are distinct prime numbers and e and d are positive integers satisfying ed = 1 (mod A(pq)).

e We have N, D, and E

Since A(pg) = lcm(p — 1, g — 1) is, by construction, divisible by both p — 1 and g — 1, we can write
ed—1=h(p—1)=k(g—1)

® N : PUbliC Key (e n C ry p't i O n key) for some nonnegative integers 4 and k.["°¢ 2]

ed and m, are congruent mod pgq, it suffices (and in fact is equivalent) to check that they

[note 3]

To check whether two numbers, such as m
are congruent mod p and mod g separately.

¢ D : Priva te Key (d eC ry pt i O n key) To show m®? = m (mod p), we consider two cases:

1. If m =0 (mod p), m is a multiple of p. Thus m
2. If m £ 0 (mod p),

¢ E. PUbIIC EXponent m® = m® lm = MMt Vm = (P Hrm=1""m=m (mod p),
where we used Fermat's little theorem to replace mP 1 mod p with 1.

The verification that m®? = m (mod g) proceeds in a completely analogous way:

ed js a multiple of p. So m%? = 0 = m (mod p).

e [o encrypt: c=mEmodN

1. Ifm=0 (mod g), m*is a multiple of g. So m®® =0 = m (mod q).
2. If m %= 0 (mod q),

m® = m® Im = mH Y m = (Mt Y,rm=1""m=m (mod q).

e [o decrypt: m = cP mod N

This completes the proof that, for any integer m, and integers e, d such that ed = 1 (mod A(pq)),

(m®) =m (mod pq).

It jJust works, don’t need to bother remembering why
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Thought experiment #/

What is the largest m that may be encrypted with
some public key n?

What if m exceeds this value?

As a reminder:
c=me (mod n)
m=c9 (mod n)
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Exponent

 From earlier: e is picked s.t. 1 <e < ®(N) and gcd(e, d(N)) = 1
 English: we select e between 1 and ¢p(N) that shares no factors with ¢p(N)
* e Is almost always in practice going to be 65537

e Other (less so) popular values are 3, 5, 17, 257

 Fermat primes: 22"k+1
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Thought experiment #8

Why are Fermat Primes of the form 22"k+1 useful
as values of the public exponent?

Why would | prefer e=65537 over e=65407"

Assume 1 < e < ®(N) and gcd(e, d(N)) = 1
in both cases
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Side tangent: Why Fermat primes (22"k+1)?

e 65537: 0b10000000000000001
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RSA

Side tangent: Why Fermat primes (22"k+1)?

e 65537: 0b10000000000000001
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Side tangent: Why Fermat primes (22"k+1)?

XX ¥ RISC — vim [tmp/fermat.c — 80x24
e |65537: 0b10000000000000001 message = ...;
A2

tmp = message * message; // message
tmp = tmp * tmp; // message " 4

¢ 65407 Ob01111111101111111 tmp = tmp * tmp; // message " 16
tmp = tmp *x tmp; // message * 256
tmp = tmp * tmp; // message * 65536

nc = tmp * message; // message " 65537

e
i
~
~
~
~
~
~
~
~
T
~
~
~
~

"/tmp/fermat.c" 10L, 233B
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Side tangent: Why Fermat primes (22"k+1)?

000 ™ RISC — vim [tmp/fermat.c — 80x34
m2 = message * message; // m*2
mé = m2 * m2; // mr4
m8 = m& * mbk; // m"8
mlé = m8 * m8; // m”r16
e 65537: 0b10000000000000001 n32 = m6 o mie; /1 m"32
mé4 = m32 *x m32; // mh64
ml28 = mbé4 * mb4; // m*r128
m256 = m128 * ml128; // m”r256
65407 Ob01 1 1 1 1 1 1 1 01 1 1 1 1 1 'I m512 = m256 *x m256; // mA512
- - == = = = = - e ml024 = mbl2 * mbl2; // m*"1024
m2048 = mlO24 * mlO24; // m"2048
m4096 = m2048  * m2048; // m*r4096
m8192 = m4096 * m&4096; // m"8192
m1l6384 = m8192 * m8192; // m*"16384
m32768 = ml6384 * ml6384; // m"32768
enc = message; // include 270
enc = enc % m2; // include 271
enc = enc * mé&; // include 272
enc = enc * m8; // include 273
enc = enc * mlé; // include 2”4
enc = enc * m32; // include 275
enc = enc * méa4; // include 276
// skip m128 (bit 7 = 0)
enc = enc * m256; // include 278
enc = enc * m512; // include 279
enc = enc % mle24; // include 2710
enc = enc * m2048; // include 2711
enc = enc * m4096; // include 2712
enc = enc * m8192; // include 2713
enc = enc *x mlé6384; // include 2714
inc = enc * m32768; // include 2715

"/tmp/fermat.c" 33L, 1592B
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Side tangent: Why Fermat primes (22"k+1)?

o W | ™ RISC — vim [tmp/fermat.c — 80x34
m2 = message * message; // m*2
mé = m2 * m2; // mr4
m8 = m& * mb; // m"8
ml16 = m8 * m8; // m*16
e 65537: 0b10000000000000001 n32 = m6 o mie; /1 m"32
mé4 = m32 *x m32; // mh64
m128 = mé4 * mbé4; // m*128
m256 = m128 * ml128; // m”r256
65407 Ob01 1 1 1 1 1 1 1 01 1 1 1 1 1 1 m512 = m256 *x m256; // mA512
- - == = = = = - e ml024 = mbl2 * mbl2; // m*"1024
m2048 = mlO24 * mlO24; // m"2048
m4096 = m2048 * m2048; // mr4096
m8192 = m4096 * m&4096; // m"8192
m1l6384 = m8192 * m8192; // m*"16384
m32768 = ml6384 * ml6384; // m"32768
enc = message; // include 270
] ] enc = enc * m2; // include 271
enc = enc * mé&; // include 272
Implementation detalls are st i o A ity
. . enc = enc * mlé; // include 274
ImpOrtant In CryptO! enc = enc * m32; // include 275
enc = enc * méa4; // include 276
// skip m128 (bit 7 = 0)
enc = enc * m256; // include 278
enc = enc * m512; // include 279
enc = enc % mle24; // include 2710
enc = enc * m2048; // include 2711
enc = enc * m4096; // include 2712
enc = enc *x m8192; // include 2713
enc = enc * mlé6384; // include 2714
inc = enc * m32768; // include 2715

"/tmp/fermat.c" 33L, 1592B
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Thought experiment #8

We already know that a small modulus (small n)
IS weak, as it can be easily factored.

What about if the public exponent is super low?
What if e=3?

How would this affect the security of RSA?

As a reminder:
c=me (mod n)
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e 28,472 mod 1,824,792 = 28,472
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Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)

 What if meis less than n”?

* |f e and m are small, and n is large, then:
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Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)

 What if meis less than n”?

* |f e and m are small, and n is large, then:

*° Me<nN->cCc=m¢
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Exponent

e 28,472 mod 1,824,792 = 28,472
* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)
 What if meis less than n”?
* |f e and m are small, and n is large, then:
* me<n->c=me

® m=c1/e
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Exponent

e 28,472 mod 1,824,792 = 28,472
* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)
 What if meis less than n”?
* |f e and m are small, and n is large, then:
* m3<n->c=m3
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Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything

e c=me(mod n)

Further reading:
- Coppersmith’s attack
- Hastad’s attack

e What if meis less than n?
* |f e and m are small, and n is large, then:
° m3<n->c=m3
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Further down the rabbit hole

 We’ve only really scratched the surface of things

« PRNGs, stream ciphers, oracle attacks, partial leaks, side channels...

* There is not enough time in this workshop to cover everything :(
 Some challenges this week will require you to investigate some of these
* Feel free to ask questions in the discord

* As long as they’re generic in nature
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 Hopefully to some extent you can start to “think like an attacker” w.r.t crypto
 Some advice: the road of learning is long and windy and complicated at times
» Celebrate the milestones along the way!
 Easy to get overwhelmed

 CTF should be about having fun, not stressing because you are stuck
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https://ctf.urisc.club
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