o Zellic

Intro2crypto

You had to be there for the attendance flag!

~RISC 30/7/25

Acknowledgment of Country

RISC acknowledges the people of the Woi Wurrung
and Boon Wurrung language groups of the eastern
Kulin Nation on whose unceded lands we conduct the
business of the University and the club. RISC
acknowledges their Ancestors and Elders, past,

present, and emerging

A\

s Zellic

\3/
=/

HoO
u
sekeepl
N
O

_ I Zellic
Housekeeping

* You now have two weeks to solve challenges

_ % Zellic
Housekeeping

* You now have two weeks to solve challenges

e Solutions are revealed in the next workshop

_ % Zellic
Housekeeping

* You now have two weeks to solve challenges
e Solutions are revealed in the next workshop

* Will also be on https://writeups.urisc.club

https://writeups.urisc.club

: o Zellic
Housekeeping

* You now have two weeks to solve challenges
e Solutions are revealed in the next workshop

* Will also be on https://writeups.urisc.club

* Prizes! (Hopefully)

https://writeups.urisc.club

% Zellic
Al usage

 We can’t stop you using Al

o Zellic

Al usage

 We can’t stop you using Al

 But it doesn’t really teach you anything

% Zellic
Al usage

 We can’t stop you using Al
 But it doesn’t really teach you anything

 There’s a lot of satisfaction in reaching a solution by yourself :/)

% Zellic
Al usage

 We can’t stop you using Al
 But it doesn’t really teach you anything
 There’s a lot of satisfaction in reaching a solution by yourself :/)

 Most modern CTF crypto challenges are beyond what any LLM can handle

% Zellic
Al usage

 We can’t stop you using Al

 But it doesn’t really teach you anything

* There’s a lot of satisfaction in reaching a solution by yourself : /)

 Most modern CTF crypto challenges are beyond what any LLM can handle

e You should learn to “think like an attacker”

o Zellic

Al usage

 We can’t stop you using Al

 But it doesn’t really teach you anything

* There’s a lot of satisfaction in reaching a solution by yourself : /)

 Most modern CTF crypto challenges are beyond what any LLM can handle
e You should learn to “think like an attacker”

* Al will also be utterly useless for future weeks

This week's sponsor

||
>

S

s> Zellic

Zellic is a security research firm. Our targets include compilers, virtual
machines, web apps, circuits, proof systems, and more. Before Zellic, we
previously founded perfect blue, the #1 CTF team in 2020 and 2021. If
you're smart and good at CTFs, we'd love to meet you.

We offer a complete benefits package and direct equity participation. We
also offer flexible hours, remote work, and both full-time and part-time roles.
Our team enjoys regular fully-funded offsites and range of other perks.

Ask your friends: you might already know someone who works here.

To learn more, check out our blog: zellic.io/auditooor-grindset

jobs@zellic.io | zellic.io/careers | @gf_256 (discord)

http://zellic.io/auditooor-grindset
mailto:jobs@zellic.io

s Zellic

\3/
/\\

W
hat |
LIS Cry
pto?

o Zellic

What is crypto?

* |Imagine you’re passing notes in class.

What is crypto?

* |Imagine you’re passing notes in class.

What is crypto?

* |Imagine you’re passing notes in class.

* Teacher catches you?

What is crypto?

* |Imagine you’re passing notes in class.
* Teacher catches you?

o Little Jimmy snitches?

What is crypto?

* |Imagine you’re passing notes in class.
* Teacher catches you?
o Little Jimmy snitches?

« How can we keep our very important
messages away from prying eyes?

o Zellic

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

* One approach is to shift letters by some amount.

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

* One approach is to shift letters by some amount.

e ABCD

EEFGH

 JKLMNOPQRSTUVIWXY 4

¢ NOPORSTUVWXYZABCD

EFGH.

‘ Shift by 13 letters

JKLM

2
>

)

Zellic

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

* One approach is to shift letters by some amount.

e ABCD

EEFGH

 JKLMNOPQRSTUVIWXY 4

¢ NOPORSTUVWXYZABCD

e “u stink” -> “h fgvax"

EFGH.

‘ Shift by 13 letters

JKLM

2
>

)

Zellic

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

* One approach is to shift letters by some amount.

e ABCD

EEFGH

 JKLMNOPQRSTUVIWXY 4

¢ GHIJKLMNOPQORSTUVWXYZABCD

* “u stink™ -> "a yzotq”

‘ Shift by 6 letters

T.1
B
1

2
>

)

Zellic

What is crypto?

» |et’s think like a >2000 year old Roman dictator.

* One approach is to shift letters by some amount.

e ABCD

EEFGH

 JKLMNOPQRSTUVIWXY 4

¢ GHIJKLMNOPQORSTUVWXYZABCD

* “u stink™ -> "a yzotq”

 Caesar Cipher

‘ Shift by 6 letters

T.1
B
1

2
>

)

Zellic

What is crypto?

e [et’s think like a >200

 One approach is to st

e ABCD

* GHIJKLMNOPQRST!

* “u stink™ -> "a yzotq”

EEFGH

 JKLMN

v

 Caesar Cipher

What is crypto?

* Obviously weak

What is crypto?

* Obviously weak

h fgvax

| ghwby

] hixcz

K Ijyda
jkzeb
m klafc
n Imbgd
o0 mnche
p nodif
q opejg
r pgfkh
s grgli

t rshm;
u stink
v tujol

W uvkpm
X vwign
Y WXMro
Z Xynsp
a yzotq
b zapur
c abqvs
d bcrwt
e cdsxu
f detyv
g efuzw

What is crypto?

* Obviously weak

h fgvax

| ghwby

] hixcz

K Ijyda
jkzeb
m klafc
n Imbgd
o0 mnche
p nodif
q opejg
r pgfkh
s grgli

t rshm;
u stink
v tujol

W uvkpm
X vwign
Y WXMro
Z Xynsp
a yzotq
b zapur
c abqvs
d bcrwt
e cdsxu
f detyv
g efuzw

What is crypto?

* Obviously weak

 Requires at most 25 brute force attempts

What is crypto?

* Obviously weak
 Requires at most 25 brute force attempts

 Computationally very cheap

What is crypto?

* Obviously weak
 Requires at most 25 brute force attempts
 Computationally very cheap

e https://gchq.qgithub.io/CyberChef

https://gchq.github.io/CyberChef

A\

s Zellic

\3/
=/

Ca
1
W
e
do bette
r?

o Zellic

Can we do better?

Of course we can do better there’s at least 50 slides left

QA

igenere

Vv

C\-
e
C
D)
o,
-
©
-
C
O
-
O
=
O
©
>
O
) -
O
-
Q@
-
O
©
D
d
O
e
©
-
o,
D
=
=
e
®
=
o

QA

igenere

Vv

C\-
e
C
D)
o,
-
©
-
C
O
-
O
=
O
©
>
O
) -
O
-
Q@
-
O
©
D
d
O
e
©
-
o,
D
=
=
e
®
=
o

"u stink”

text:

N

Plal

IIABC I

e Key

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: "u stink”

. Key: "ABC'

0 1 2

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: "u stink”

« Key: "ABC"
e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (0)
e A: ABCDEFGHIJKLMNOPQRSTUVWXYZ (0)
e B: BCDEFGHIJKLMNOPQRSTUVWXYZA (1)
e C: CDEFGHIJKLMNOPQRSTUVWXYZAB (2)

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: "u stink"

o Key: "ABCABC"
e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (O
e A: ABCDEFGHIJKLMNOPQRSTUVWXYZ (0)
e B: BCDEFGHIJKLMNOPQRSTUVWXYZA (1)
e C: CDEFGHIJKLMNOPQRSTUVWXYZAB (2)

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: "ustink"

o Key: "ABCABC"
e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (O
e A: ABCDEFGHIJKLMNOPQRSTUVWXYZ (0)
e B: BCDEFGHIJKLMNOPQRSTUVWXYZA (1)
e C: CDEFGHIJKLMNOPQRSTUVWXYZAB (2)

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: "ustink"

=) utviom
o Key: "ABCABC"
e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (O
e A: ABCDEFGHIJKLMNOPQRSTUVWXYZ (0)
e B: BCDEFGHIJKLMNOPQRSTUVWXYZA (1)
e C: CDEFGHIJKLMNOPQRSTUVWXYZAB (2)

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: "ustink"

» utviom
o Key: "ABCABC"
e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (O
e A: ABCDEFGHIJKLMNOPQRSTUVWXYZ (0)
e B: BCDEFGHIJKLMNOPQRSTUVWXYZA (1)
e C: CDEFGHIJKLMNOPQRSTUVWXYZAR (2)

1%

o Zellic

\\

Vigenere

e But is this more secure?

A

Zellic

z

Vigenere

e But is this more secure?

e \We can't brute force...

A

Zellic

z

Vigenere

 But is this more secure?
e \We can't brute force...

* We would have to guess the whole key, right?

1%

o Zellic

\\

Vigenere

 But is this more secure?
e \We can't brute force...
* We would have to guess the whole key, right?

e Soit's secure!

Vigenere

 But is this more secure?
e \We can't brute force...
* We would have to guess the whole key, right?

e Soit's secure!

A

Zellic

z

Vigenere

* But is this more secure?

 We can't brute force...

* We would have to guess the whole key, right?
* So it's secure!

e Orisit...

o Zellic

Thought experiment

% Zellic
Thought experiment

If, for some Vigenere cipher:
 We know the key length is N
 We know N consecutive characters in the message

Can the cipher be broken? How?

Vigenere

 What if we rotated each letter by a different amount?

e Plaintext: .tin.

o Key:

= Utvio

e 0: ABCDEFGHIJKLMNOPQRSTUVWXYZ (O

: . o Zellic
Vigenere
ETAOINSHRDLU

* All languages have a letter frequency distribution ——0—0— |
ETAOIN! SHRDLU! CMFWYP!
New York,suly 18.—Here are two
reasons why bailiffs, judges, prosecu-
tors and court stenographers dia

yOUung.
John Ziampettisledibetei was fined
$1 for owning an unmuzzled dog.
Robert Tyzyczhowzswiski is aske
ing the court to change his cogno-
nien.

m A N 4T/I\\ Ze"IC
Vigenere

ETAOINSHRDLU
* All languages have a letter frequency distribution ——0—0—— |
ETAQIN! SHRDLU! CMFWYP!
|] , New York,«uly 18.—Here are two
* | et's consider the simpler case: reasons why bailiffs, judges, prosecu-
tors and court stenographers dia
. . . . young.

* monoalphabetic substitution cipher John Ziampettisledibetci was fined

$1 for owning an unmuzzled dog.

Robert Tyzyczhowzswiski is aske
ing the court to change his cogno-
men.

m A N 4T/I\\ Ze"IC
Vigenere

ETAOINSHRDLU
* All languages have a letter frequency distribution ——0—0—— |
ETAQIN! SHRDLU! CMFWYP!
|] , New York,«uly 18.—Here are two
* | et's consider the simpler case: reasons why bailiffs, judges, prosecu-
tors and court stenographers dia
. . . . young.

* monoalphabetic substitution cipher John Ziampettisledibetci was fined

$1 for owning an unmuzzled dog.
Robert Tyzyczhowzswiski is aske
o A->X, B->D, C'>W, D->J, ing the court to change his cogno-

I1eln.

: . o Zellic
Vigenere

ETAOINSHRDLU
* All languages have a letter frequency distribution ——0—0— |
ETAQIN! SHRDLU! CMFWYP!
| _] New York,«uly 18.—Here are two
* | et's consider the simpler case: reasons why bailiffs, judges, prosecu-
tors and court stenographers die
. . . . YOUNE.
* monoalphabetic substitution cipher John Ziampettisledibetci was fined
$1 for owning an unmuzzled dog.
Robert Tyzyczhowzswiski is aske
o A->X, B->D, C'>W, D->J, ing the court to change his cogno-

I1eln.

 The most common letters in English are ETAOINSHRDLU (in order)

o Zellic

Vigenere
ETAOINSHRDLU
* All languages have a letter frequency distribution ——0—0— |
ETAQIN! SHRDLU! CMFWYP!
| _] New York,suly 18.—Here are two
* | et's consider the simpler case: reasons why bailiffs, judges, prosecu-
tors and court stenographers dia
. . . . YOUNE.
* monoalphabetic substitution cipher John Ziampettisledibetci was fined
$1 for owning an unmuzzled dog.
Robert Tyzyczhowzswiski is aske
o A->X, B->D, C'>W, D->J, ing the court to change his cogno-

I1eln.

 The most common letters in English are ETAOINSHRDLU (in order)

 The most frequent letters in the ciphertext are probably those in order too!

o Zellic

Vigenere
ETAOINSHRDLU
* All languages have a letter frequency distribution ——0—0— |
ETAQIN! SHRDLU! CMFWYP!
| _] New York,suly 18.—Here are two
* | et's consider the simpler case: reasons why bailiffs, judges, prosecu-
tors and court stenographers dia
. . . . YOUNE.
* monoalphabetic substitution cipher John Ziampettisledibetci was fined
$1 for owning an unmuzzled dog.
Robert Tyzyczhowzswiski is aske
o A->X, B->D, C'>W, D->J, ing the court to change his cogno-

I1eln.

 The most common letters in English are ETAOINSHRDLU (in order)

 The most frequent letters in the ciphertext are probably those in order too!

* Fails with small messages, but with scale this becomes very precise

o Zellic

Thought experiment #2

o Zellic

Thought experiment #2

If, for some Vigenere cipher:

 We know the length of the key

* The key Is repeated some number of times
 The message is sufficiently long

 The message is in English

Can the cipher be broken? How?

: . o Zellic
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

: . o Zellic
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns

m A N 4T/I\\ Ze"IC
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC
* \We can rearrange our ciphertext into 4 columns
¢ 0,4,8,12, 16, ...
¢ 1,5,9,13,17, ...
¢ 2,6, 10, 14,18, ...
¢ 3,7,11,15,19, ...

m A N 4T/I\\ Zelllc
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns

e 0,4, 8,12, 16, ...
e 1,5,9,13, 17, ... \

¢ 2,0,10,14,18, ...

R

¢ 3,7,11,15,19, ...

m A N 4T/I\\ Zelllc
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC
* \We can rearrange our ciphertext into 4 columns

 0,4,8,12, 16, ...

° 1, 5, 9, 13, 17, h

¢ 2,0,10,14,18, ...

¢ 3,7,11,15,19, ...

m A N 4T/I\\ Zelllc
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns
¢ 0,4,8,12, 16, ...
¢ 1,5,9,13,17, ...

/S
e 2,0,10, 14, 18, ...

¢ 3,7,11,15,19, ...

m A N 4T/I\\ Zelllc
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns
¢ 0,4,8,12, 16, ...
¢ 1,5,9,13,17, ...

C
¢ 2 6,10,14,18,.../
e 3,7,11,15,19, ...

m A N 4T/I\\ Ze"IC
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC
* \We can rearrange our ciphertext into 4 columns

 Each column represents part of the message that was encrypted with 1 letter

m A N 4T/I\\ Ze"IC
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC
* \We can rearrange our ciphertext into 4 columns
 Each column represents part of the message that was encrypted with 1 letter

4 Caesar ciphers

m A N 4T/I\\ Ze"IC
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns

 Each column represents part of the message that was encrypted with 1 letter
4 Caesar ciphers

* Brute forcing is still hard, but we can use frequency analysis

m A N 4T/I\\ Ze"IC
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns

 Each column represents part of the message that was encrypted with 1 letter
4 Caesar ciphers

* Brute forcing is still hard, but we can use frequency analysis

 Reduces attack from 26N to 26*N for key of length N

m A N 4T/I\\ Ze"IC
Vigenere

Frequency Analysis with known key length

e Say we have a 4 letter key, RISC

* \We can rearrange our ciphertext into 4 columns

 Each column represents part of the message that was encrypted with 1 letter
4 Caesar ciphers

* Brute forcing is still hard, but we can use frequency analysis

 Reduces attack from 26N to 26*N for key of length N
e |n this case, 456,976 to 104

o Zellic

Thought experiment #3

o Zellic

Thought experiment #3

If, for some Vigenere cipher:

* The key Is longer than the message
 The key is truly random

* The key Is never reused

Can the cipher still be broken? How?

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

 And the key Is never used more than once

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message
 And the key Is never used more than once

* Perfect secrecy has been achieved!

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message
 And the key Is never used more than once
* Perfect secrecy has been achieved!

* Even if some of the plaintext is known (say, you always start with “Dear X”)

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

 And the key Is never used more than once

* Perfect secrecy has been achieved!

 Even if some of the plaintext is known (say, you always start with “Dear X”)

* No information about the rest of the message is recovered

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

 And the key Is never used more than once

* Perfect secrecy has been achieved!

 Even if some of the plaintext is known (say, you always start with “Dear X”)
* No information about the rest of the message is recovered

* This was actually how cold-war spies received orders from HQ!

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

 And the key is never used more than once

* Perfect secrecy has been achieved!

 Even if some of the plaintext is known (say, you always start with “Dear X”)
* No information about the rest of the message is recovered

* This was actually how cold-war spies received orders from HQ)!

e Further reading: Number Stations

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

 And the key Is never used more than once

* Perfect secrecy has been achieved!

 Even if some of the plaintext is known (say, you always start with “Dear X”)
* No information about the rest of the message is recovered

* This was actually how cold-war spies received orders from HQ)!

e Further reading: Number Stations ALLEGEDLY

m A N 4T/I\\ Ze"IC
Vigenere
OTP

* |f the key Is longer than the message

 And the key Is never used more than once

* Perfect secrecy has been achieved!

 Even if some of the plaintext is known (say, you always start with “Dear X”)
* No information about the rest of the message is recovered

* This was actually how cold-war spies received orders from HQ!

. _ Probably still in use today by
e Further reading: Number Stations some countries, but this is pure

speculation

o Zellic

But how do you exchange the key?

o Zellic

XOR

Winding forward ~500 years

o Zellic

XOR

Winding forward ~500 years

* Encrypting only letters isn’t super useful

o Zellic

XOR

Winding forward ~500 years

* Encrypting only letters isn’t super useful
 Maybe we want:

e Numbers

o Zellic

XOR

Winding forward ~500 years

* Encrypting only letters isn’t super useful
 Maybe we want:
 Numbers

 Uppercase/lowercase

o Zellic

XOR

Winding forward ~500 years

* Encrypting only letters isn’t super useful
 Maybe we want:

 Numbers

 Uppercase/lowercase

e Special characters

o Zellic

XOR

Winding forward ~500 years

* Encrypting only letters isn’t super useful
 Maybe we want:

 Numbers

 Uppercase/lowercase

e Special characters

* The full range of a byte? (0-255)

o Zellic

XOR

Winding forward ~500 years

» Bitwise operation

o Zellic

XOR

Winding forward ~500 years

» Bitwise operation

e Super fast on modern CPUs (ancient ones too)

o Zellic

W

XOR

Winding forward ~500 years

» Bitwise operation
e Super fast on modern CPUs (ancient ones too)

* 1 clock cycle

o Zellic

XOR

Winding forward ~500 years

» Bitwise operation
e Super fast on modern CPUs (ancient ones too)
* 1 clock cycle

* Properties that make it useful for crypto

XOR

Winding forward ~500 years

» Bitwise operation

e Super fast on modern CPUs (ancient ones too)

* 1 clock cycle

* Properties that make it useful for crypto

XOR

Winding forward ~500 years

» Bitwise operation

e Super fast on modern CPUs (ancient ones too)
* 1 clock cycle

* Properties that make it useful for crypto

e Balanced outputs (AND has 3 0’s, OR has 3 1’s)

o Zellic

XOR ’

Involution

A B Output
e XOR s it’'s own inverse

0 0 0

0 1 1

1 0 1

1 1 0

XOR

Involution

e XOR is it’s own Iinverse

c AeoB)@eaB=A

XOR ’

Involution
A B Output
e XOR is it’s own Iinverse
0 0 0
c AeoB)@eaB=A
. Ao (BoB)=A ’ ‘ ‘

XOR ’

Involution
A B Output
e XOR is it’s own Iinverse
0 0 0
c AeoB)@eaB=A
. Ao (BoB)=A ’ ‘ 1

c A ()=A 1 0

XOR ’

Involution
A B Output
e XOR is it’s own Iinverse
0 0 0
c AeoB)@eaB=A
c AoB=C=>A=BaC ’ 1 1

XOR ’

Involution
A B Output
e XOR is it’s own Iinverse
0 0 0
c AeoB)@eaB=A
c AoB=C=>A=BaC ’ 1 1

- AoBeoB=CoB 1 0

XOR ’

Involution
A B Output
e XOR is it’s own Iinverse
0 0 0
c AeoB)@eaB=A
c AoB=C=>A=BaC ’ 1 1

e A=Co®B 1 0

XOR

Involution

A
e XOR is it’'s own inverse .
c AeoB)@eaB=A
- AoB=C=>A=BoC ’

* NB: We use @ to represent XOR in slides 3

* You will see N used In code to represent the same operation

o Zellic

XOR

Cryptography

* |f we have some message M

o Zellic

XOR

Cryptography

* |f we have some message M

 And some key K

o Zellic

XOR

Cryptography

* |f we have some message M
* And some key K
 We can obtain ciphertext C=M @ K

o Zellic

XOR

Cryptography

* |f we have some message M
* And some key K
 We can obtain ciphertext C=M @ K

 And we can decrypt withM =C & K

o Zellic

XOR

Cryptography

* |f we have some message M
* And some key K
 We can obtain ciphertext C=M @ K

 And we can decrypt withM =C & K

e Question: Do you notice any similarities to Vigenere here? Do the same
attacks work"?

o Zellic

Thought experiment #4

s Zellic
Thought experiment #4

How is XOR encryption similar to Vigenere?
Do the same attacks work?

What new attacks emerge”?

o Zellic

XOR

e Same problems as Vigenere

o Zellic

XOR

e Same problems as Vigenere

 Column frequency analysis

o Zellic

XOR

e Same problems as Vigenere
* Column frequency analysis

 Small key brute force

o Zellic

XOR

e Same problems as Vigenere
 Column frequency analysis
 Small key brute force

o Key distribution

o Zellic

XOR

e Same problems as Vigenere
 Column frequency analysis
 Small key brute force

o Key distribution

o Zellic

XOR

e Same problems as Vigenere
 Column frequency analysis
 Small key brute force

» Key distribution (unless you’re a cold war era spy)

o Zellic

RSA

* Finding factors of numbers isn’t really fun

o Zellic

RSA

* Finding factors of numbers isn’t really fun

e |n fact, it’s not fun for computers either

o Zellic

RSA

* Finding factors of numbers isn’t really fun
e |n fact, it’s not fun for computers either

 While 64 bit numbers can be factored incredibly fast...

o Zellic

RSA

* Finding factors of numbers isn’t really fun
e |n fact, it’s not fun for computers either
 While 64 bit numbers can be factored incredibly fast...

* ... what about 2048 bits? 40967 81927

o Zellic

RSA

* Finding factors of numbers isn’t really fun
e |n fact, it’s not fun for computers either
 While 64 bit numbers can be factored incredibly fast...

* ... what about 2048 bits? 40967 81927

* |t get’s even worse if the number is the product of two N bit primes!

o Zellic

RSA

* Finding factors of numbers isn’t really fun

e |n fact, it’s not fun for computers either

 While 64 bit numbers can be factored incredibly fast...

* ... what about 2048 bits? 40967 81927

* |t get’s even worse if the number is the product of two N bit primes!

e Can’tdivide by 2, 3, 5, 7, ...

o Zellic

RSA

Integer Factorisation

* Unsolved problem - “Can an integer be factored in polynomial time”

1%

=i Zellic

ZI

RSA *on a

Integer Factorisation classical
computer

* Unsolved problem - “Can an integer be factored in polynomial time”

1%

= Zellic

Al

RSA *on a

Integer Factorisation classical
computer

* Unsolved problem - “Can an integer be factored in polynomial time”
* (Generally assumed to be NP

e Hard to find a solution

1%

= Zellic

Al

RSA *on a

Integer Factorisation classical
computer

* Unsolved problem - “Can an integer be factored in polynomial time”
* (Generally assumed to be NP
 Hard to find a solution

 Easy to verify a solution

1%

= Zellic

Al

RSA *on a

Integer Factorisation classical
computer

* Unsolved problem - “Can an integer be factored in polynomial time”
* (Generally assumed to be NP
 Hard to find a solution (hard to find factors of a given number)

* Easy to verify a solution (easy to check if A and B are factors of a number)

1%

= Zellic

Al

RSA *on a

Integer Factorisation classical
computer

* Unsolved problem - “Can an integer be factored in polynomial time”
* (Generally assumed to be NP
 Hard to find a solution (hard to find factors of a given number)

* Easy to verify a solution (easy to check if A and B are factors of a number)

* |f you disagree...

RSA

o Zellic

Integer Factorisation ccl)gsgical
computer
* Unsolved probl&s 22‘ time”
* Generally assurfg ZZ
e Hard to find ¢ mber)

b9
£3

 Easy to verif

cC
acC
al

. 89 ct
* |f you disagree.gk &9

ABank of America’s public key.

®jors of a number)

o Zellic

RSA

Integer Factorisation

 RSA’s security relies on the fact that factoring is hard

% Zellic
RSA

Integer Factorisation

 RSA’s security relies on the fact that factoring is hard

* Current record is factoring a 795-bit number on specialised hardware

% Zellic
RSA

Integer Factorisation

 RSA’s security relies on the fact that factoring is hard
* Current record is factoring a 795-bit number on specialised hardware

* A lot of smaller numbers (<128 bit) have known factors on FactorDB.com

o Zellic

RSA

Integer Factorisation

 RSA’s security relies on the fact that factoring is hard
* Current record is factoring a 795-bit number on specialised hardware

* A lot of smaller numbers (<128 bit) have known factors on FactorDB.com

« How do we go from factoring -> encryption?

http://FactorDB.com

o Zellic

The next bit Is math heavy

(sorry)

o Zellic

RSA

Modular Arithmetic - Intuition

* |t’s 18:00 right now. What time will it be in 219 hours?

o Zellic

RSA

Modular Arithmetic - Intuition

* |t’s 18:00 right now. What time will it be in 219 hours?
 Hard way:

 Add 6 hours -> midnight, 13 hours left

 Add 12 hours -> midday, 1 hour left

e ... repeat many, many, many times

* Add remainder -> 9PM / 21:00

* Answer: 9PM / 21:00

o Zellic

RSA

Modular Arithmetic - Intuition

* |t’s 18:00 right now. What time will it be in 219 hours?
 Easy way:
¢ 18 + 219 -> 237
 We want an answer in [0,24), so divide by 24 and get the remainder
o 237 /24 =9 r21
* Answer: 9PM / 21:00

o Zellic

RSA

Modular Arithmetic

o System of arithmetic where values wrap around after a certain value
(modulus)

o Zellic

RSA

Modular Arithmetic

o System of arithmetic where values wrap around after a certain value
(modulus)

* |n our time example, the modulus would be 24 (or 12 for AM/PM format)

o Zellic

RSA

Modular Arithmetic

o System of arithmetic where values wrap around after a certain value
(modulus)

* |n our time example, the modulus would be 24 (or 12 for AM/PM format)

o Alternatively: “Remainder of division”
e 237 mod 24 — 237 /24 =9 r21
e 237 mod 24 = 21

o Zellic

RSA

Modular Arithmetic

* Only defined for the integers, 7

o Zellic

RSA

Modular Arithmetic

* Only defined for the integers, 7

* |nherits associativity, commutativity, distributivity, ...

o Zellic

RSA

Modular Arithmetic

* Only defined for the integers, 7
* |nherits associativity, commutativity, distributivity, ...

e @+b)modne (b+a modn

o Zellic

RSA

Modular Arithmetic

* Only defined for the integers, 7
* |nherits associativity, commutativity, distributivity, ...

e @+b)modne (b+a modn

e amodn*bmodn<& (a”*b) modn

o Zellic

RSA

Modular Arithmetic

* Only defined for the integers, 7
* |nherits associativity, commutativity, distributivity, ...

e @+b)modne (b+a modn
e amodn*bmodn<& (a”*b) modn

 Division is not defined

o Zellic

RSA

Asleep yet?

e 8+ 11 mod 13 =7
e 9*"8mod 11 =7
e 28,472 mod 1,824,792 = 7

o Zellic

RSA

Asleep yet?

e 8+11mod13 =06
e 978 mod 11 =0
e 28,472 mod 1,824,792 = 28,472

S

x> Zellic

W

Asleep yet?

|8+ 11 mod 13 =6 8+ 11 =19
19 mod 13 =6

e 9*8mod 11 =6 19/13 =116

o 28,472 mod 1,824,792 = 28,472

\

o Zellic

\\

RSA

Asleep yet?

« 8+11mod 13 =6 978 =172
/2mod 11 =06

198 mod 11 =6 72/11 =616

o 28,472 mod 1,824,792 = 28,472

\

o Zellic

\\

RSA

Asleep yet?

* 8+11mod 13 =6 28,472 mod 1,824,792 = 28,472

28,472/1,824,792 =0r28,472
e 98 mMod11 =06

128,472 mod 1,824,792 = 28,472

o Zellic

RSA

Modular Multiplicative Inverse

e |n nhormal math, x1x = 1

e Since X 1x & Xx/X

o Zellic

RSA

Modular Multiplicative Inverse

e |n normal math, x-1x = 1

e Since X 1x & Xx/X

 This also holds in modular arithmetic, but...

o Zellic

RSA

Modular Multiplicative Inverse

e |n nhormal math, x1x = 1

e Since X 1x & Xx/X

 This also holds in modular arithmetic, but...

e What is x-1in modular arithmetic?

o Zellic

RSA

Modular Multiplicative Inverse

e |n normal math, x-1x = 1

e Since X 1x & Xx/X

 This also holds in modular arithmetic, but...
e What is x-1in modular arithmetic?

e 1/x isn’t defined, since division isn’t defined...

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:

e ax=1modm

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:

e ax=1modm

 Example:

e XxX=3, m=7,a="7?

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e g=1=17*83 = mod 7/

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=2=2"3=6mod 7

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=3=3"3=2mod 7

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=4=4"3=5mod 7

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=5=5"3=1mod 7

o Zellic

RSA

Modular Multiplicative Inverse

 |n modular arithmetic, x-1is some a such that:
e ax=1modm

 Example:
e XxX=3, m=7,a="7?

e a=5=5"3=1mod 7

e Theinverseof3mod7is5

o Zellic

Thought experiment #5

o Zellic

Thought experiment #5

Does a multiplicative inverse always exist?

If not, under what circumstances does it exist?

How could you find the inverse faster?

3% Zellic

RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

3% Zellic

RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

o Zellic

RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

Ifx =4, m=2, gcd(x,m) =2

3% Zellic

RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

If x =7, m=2, gcd(x,m) =1

o Zellic

RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1

The largest number that
evenly divides both x and m is 1

fx=7,m=14,gcd(x,m) =7

I Zellic
RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1
* Can find using Extended Euclidean Algorithm

* Solves a, y, forax + my =1

% Zellic

RSA

FiInding Inverses

 MMI only exists iff gcd(x, m) = 1
* Can find using Extended Euclidean Algorithm
* Solves a, y, forax + my =1

« How/why EEA works is an exercise for the reader (and not super important)

o Zellic

But how does RSA actually work?

o Zellic

RSA

Key Pairs

* Let’s generate two prime numbers (call them P and Q)

% Zellic
RSA

Key Pairs

* Let’s generate two prime numbers (call them P and Q)

* The product of the two, N=PQ), is the Public Key (encryption key)

% Zellic
RSA

Key Pairs

* Let’s generate two prime numbers (call them P and Q)

* The product of the two, N=PQ), is the Public Key (encryption key)

* Private Key (D) (decryption key) and Public Exponent (E) are calculated as:
* d(N) = (P -1)Q-1)
 Eispickeds.t. 1 <e < ®(N)and gcd(e, d(N)) = 1
e D=E1Tmod ¢(N)

N

o Zellic

\\

RSA

Key Pairs

Known values

* Let’s generate two prime numbers_ (cati-them P and Q)

* The product of the tWO, 1S the Public Key (encryption key)

* Private Key (D) (decryption key) and Public Exponentare calculated as:

+ o(N) =P} 1)@l 1)

 E Is picked s.T.

N) and gcd(e, d(N)) = 1

e D=E"mod ¢(N) Entire cryptosystem relies on the

secrecy of the primes P and Q

o Zellic

Thought experiment #6

o Zellic

Thought experiment #6

If | give you ®(N) and N, can you recover P and Q?
d(N)=201,100,838,400

N=201,140,/60,239

Reminder: p(N)=(P - 1)(Q - 1)
N=P*Q

o Zellic

RSA

 No answers for this thought experiment!

o Zellic

RSA

 No answers for this thought experiment!

+ “Factoring Phi” flag is RISC{<P>_<Q>)

o Zellic

RSA

 No answers for this thought experiment!
* “Factoring Phi” flag is RISC{<P>_<Q>}
e glhf :A)

o Zellic

RSA

Encryption/Decryption

e We have N, D, and E

o Zellic

RSA

Encryption/Decryption

e We have N, D, and E
* N: Public Key (encryption key)
* D: Private Key (decryption key)
 E: Public Exponent

o Zellic

RSA

Encryption/Decryption

e We have N, D, and E
* N: Public Key (encryption key)
* D: Private Key (decryption key)
 E: Public Exponent

e [o encrypt: c=mEmodN

RSA

Encryption/Decryption

e We have N, D, and E
* N: Public Key (encryption key)
* D: Private Key (decryption key)
 E: Public Exponent

* Jo encrypt: c = mEmod N

e [o decrypt: m = cP mod N

Zellic

o Zellic

Proof using Fermat's little theorem |ecudit]

E n CI y ti 0 n/D e CI y ti 0 n The proof of the correctness of RSA is based on Fermat's little theorem, stating that a” ~ I=1 (mod p) for any integer a and prime p,
p p not dividing a.["°%¢ 1]

We want to show that

(m)* =m (mod pa)

for every integer m when p and g are distinct prime numbers and e and d are positive integers satisfying ed = 1 (mod A(pq)).

e We have N, D, and E

Since A(pg) = lcm(p — 1, g — 1) is, by construction, divisible by both p — 1 and g — 1, we can write
ed—1=h(p—1)=k(g—1)

® N : PUbliC Key (e n C ry p't i O n key) for some nonnegative integers 4 and k.["°¢ 2]

ed and m, are congruent mod pgq, it suffices (and in fact is equivalent) to check that they

[note 3]

To check whether two numbers, such as m
are congruent mod p and mod g separately.

¢ D : Priva te Key (d eC ry pt i O n key) To show m®? = m (mod p), we consider two cases:

1. If m =0 (mod p), m is a multiple of p. Thus m
2. If m £ 0 (mod p),

¢ E. PUbIIC EXponent m® = m® lm = MMt Vm = (P Hrm=1""m=m (mod p),
where we used Fermat's little theorem to replace mP 1 mod p with 1.

The verification that m®? = m (mod g) proceeds in a completely analogous way:

ed js a multiple of p. So m%? = 0 = m (mod p).

e [o encrypt: c=mEmodN

1. Ifm=0 (mod g), m*is a multiple of g. So m®® =0 = m (mod q).
2. If m %= 0 (mod q),

m® = m® Im = mH Y m = (Mt Y,rm=1""m=m (mod q).

e [o decrypt: m = cP mod N

This completes the proof that, for any integer m, and integers e, d such that ed = 1 (mod A(pq)),

(m®) =m (mod pq).

It jJust works, don’t need to bother remembering why

o Zellic

Thought experiment #7

o Zellic

Thought experiment #/

What is the largest m that may be encrypted with
some public key n?

What if m exceeds this value?

As a reminder:
c=me (mod n)
m=c9 (mod n)

1% Zellic

RSA

Exponent

* From earlier: e is picked s.t. 1 < e < ¢®(N) and gcd(e, (N)) = 1

% Zellic
RSA

Exponent

* From earlier: e is picked s.t. 1 < e < ¢®(N) and gcd(e, (N)) = 1

 English: we select e between 1 and ¢p(N) that shares no factors with ¢p(N)

% Zellic
RSA

Exponent

* From earlier: e is picked s.t. 1 < e < ¢®(N) and gcd(e, (N)) = 1
 English: we select e between 1 and ¢p(N) that shares no factors with ¢p(N)

* e Is almost always in practice going to be 65537

% Zellic
RSA

Exponent

 From earlier: e is picked s.t. 1 <e < ®(N) and gcd(e, d(N)) = 1
 English: we select e between 1 and ¢p(N) that shares no factors with ¢p(N)
* e Is almost always in practice going to be 65537

e Other (less so) popular values are 3, 5, 17, 257

% Zellic
RSA

Exponent

 From earlier: e is picked s.t. 1 <e < ®(N) and gcd(e, d(N)) = 1
 English: we select e between 1 and ¢p(N) that shares no factors with ¢p(N)
* e Is almost always in practice going to be 65537

e Other (less so) popular values are 3, 5, 17, 257

 Fermat primes: 22"k+1

o Zellic

Thought experiment #8

o Zellic

Thought experiment #8

Why are Fermat Primes of the form 22"k+1 useful
as values of the public exponent?

Why would | prefer e=65537 over e=65407"

Assume 1 < e < ®(N) and gcd(e, d(N)) = 1
in both cases

o Zellic

RSA

Side tangent: Why Fermat primes (22"k+1)?

e 65537: 0b10000000000000001

o Zellic

RSA

Side tangent: Why Fermat primes (22"k+1)?

e 65537: 0b10000000000000001

\

x> Zellic

(/=
/

\\

RSA

Side tangent: Why Fermat primes (22"k+1)?

XX ¥ RISC — vim [tmp/fermat.c — 80x24
e |65537: 0b10000000000000001 message = ...;
A2

tmp = message * message; // message
tmp = tmp * tmp; // message " 4

¢ 65407 Ob01111111101111111 tmp = tmp * tmp; // message " 16
tmp = tmp *x tmp; // message * 256
tmp = tmp * tmp; // message * 65536

nc = tmp * message; // message " 65537

e
i
~
~
~
~
~
~
~
~
T
~
~
~
~

"/tmp/fermat.c" 10L, 233B

1%

=i Zellic

RSA

Side tangent: Why Fermat primes (22"k+1)?

000 ™ RISC — vim [tmp/fermat.c — 80x34
m2 = message * message; // m*2
mé = m2 * m2; // mr4
m8 = m& * mbk; // m"8
mlé = m8 * m8; // m”r16
e 65537: 0b10000000000000001 n32 = m6 o mie; /1 m"32
mé4 = m32 *x m32; // mh64
ml28 = mbé4 * mb4; // m*r128
m256 = m128 * ml128; // m”r256
65407 Ob01 1 1 1 1 1 1 1 01 1 1 1 1 1 'I m512 = m256 *x m256; // mA512
- - == = = = = - e ml024 = mbl2 * mbl2; // m*"1024
m2048 = mlO24 * mlO24; // m"2048
m4096 = m2048 * m2048; // m*r4096
m8192 = m4096 * m&4096; // m"8192
m1l6384 = m8192 * m8192; // m*"16384
m32768 = ml6384 * ml6384; // m"32768
enc = message; // include 270
enc = enc % m2; // include 271
enc = enc * mé&; // include 272
enc = enc * m8; // include 273
enc = enc * mlé; // include 2”4
enc = enc * m32; // include 275
enc = enc * méa4; // include 276
// skip m128 (bit 7 = 0)
enc = enc * m256; // include 278
enc = enc * m512; // include 279
enc = enc % mle24; // include 2710
enc = enc * m2048; // include 2711
enc = enc * m4096; // include 2712
enc = enc * m8192; // include 2713
enc = enc *x mlé6384; // include 2714
inc = enc * m32768; // include 2715

"/tmp/fermat.c" 33L, 1592B

o Zellic

RSA

Side tangent: Why Fermat primes (22"k+1)?

o W | ™ RISC — vim [tmp/fermat.c — 80x34
m2 = message * message; // m*2
mé = m2 * m2; // mr4
m8 = m& * mb; // m"8
ml16 = m8 * m8; // m*16
e 65537: 0b10000000000000001 n32 = m6 o mie; /1 m"32
mé4 = m32 *x m32; // mh64
m128 = mé4 * mbé4; // m*128
m256 = m128 * ml128; // m”r256
65407 Ob01 1 1 1 1 1 1 1 01 1 1 1 1 1 1 m512 = m256 *x m256; // mA512
- - == = = = = - e ml024 = mbl2 * mbl2; // m*"1024
m2048 = mlO24 * mlO24; // m"2048
m4096 = m2048 * m2048; // mr4096
m8192 = m4096 * m&4096; // m"8192
m1l6384 = m8192 * m8192; // m*"16384
m32768 = ml6384 * ml6384; // m"32768
enc = message; // include 270
]] enc = enc * m2; // include 271
enc = enc * mé&; // include 272
Implementation detalls are st i o A ity
. . enc = enc * mlé; // include 274
ImpOrtant In CryptO! enc = enc * m32; // include 275
enc = enc * méa4; // include 276
// skip m128 (bit 7 = 0)
enc = enc * m256; // include 278
enc = enc * m512; // include 279
enc = enc % mle24; // include 2710
enc = enc * m2048; // include 2711
enc = enc * m4096; // include 2712
enc = enc *x m8192; // include 2713
enc = enc * mlé6384; // include 2714
inc = enc * m32768; // include 2715

"/tmp/fermat.c" 33L, 1592B

o Zellic

Thought experiment #8

o Zellic

Thought experiment #8

We already know that a small modulus (small n)
IS weak, as it can be easily factored.

What about if the public exponent is super low?
What if e=3?

How would this affect the security of RSA?

As a reminder:
c=me (mod n)

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472

% Zellic
RSA

Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything

% Zellic
RSA

Exponent

o 28,472 mod 1,824,792 = 28,472
* |f value is less than modulus, the modulus has not changed anything

e c=me(mod n)

o Zellic

RSA

Exponent

o 28,472 mod 1,824,792 = 28,472
* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)

e What if meis less than n?

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)

 What if meis less than n”?

* |f e and m are small, and n is large, then:

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)

 What if meis less than n”?

* |f e and m are small, and n is large, then:

°* Mme<n

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)

 What if meis less than n”?

* |f e and m are small, and n is large, then:

*° Me<nN->cCc=m¢

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472
* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)
 What if meis less than n”?
* |f e and m are small, and n is large, then:
* me<n->c=me

® m=c1/e

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472
* |f value is less than modulus, the modulus has not changed anything
e c=me(mod n)
 What if meis less than n”?
* |f e and m are small, and n is large, then:
* m3<n->c=m3

o Zellic

RSA

Exponent

e 28,472 mod 1,824,792 = 28,472

* |f value is less than modulus, the modulus has not changed anything

e c=me(mod n)

Further reading:
- Coppersmith’s attack
- Hastad’s attack

e What if meis less than n?
* |f e and m are small, and n is large, then:
° m3<n->c=m3

A\

s Zellic

\3/
=/

No
m
ore mat
n!

35 Zellic

Further down the rabbit hole

 We’ve only really scratched the surface of things

o Zellic

Further down the rabbit hole

 We’ve only really scratched the surface of things

« PRNGs, stream ciphers, oracle attacks, partial leaks, side channels...

o Zellic

Further down the rabbit hole

 We’ve only really scratched the surface of things
« PRNGs, stream ciphers, oracle attacks, partial leaks, side channels...

* There is not enough time in this workshop to cover everything :(

o Zellic

Further down the rabbit hole

 We’ve only really scratched the surface of things

« PRNGs, stream ciphers, oracle attacks, partial leaks, side channels...

* There is not enough time in this workshop to cover everything :(
 Some challenges this week will require you to investigate some of these

* Feel free to ask questions in the discord

o Zellic

Further down the rabbit hole

 We’ve only really scratched the surface of things

« PRNGs, stream ciphers, oracle attacks, partial leaks, side channels...

* There is not enough time in this workshop to cover everything :(
 Some challenges this week will require you to investigate some of these
* Feel free to ask questions in the discord

* As long as they’re generic in nature

. i 1% Zellic
Wisdom

 Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

. i 1% Zellic
Wisdom

 Hopefully to some extent you can start to “think like an attacker” w.r.t crypto

 Some advice: the road of learning is long and windy and complicated at times

. i I Zellic
Wisdom

 Hopefully to some extent you can start to “think like an attacker” w.r.t crypto
 Some advice: the road of learning is long and windy and complicated at times

» Celebrate the milestones along the way!

_—) I Zellic
Wisdom

 Hopefully to some extent you can start to “think like an attacker” w.r.t crypto
 Some advice: the road of learning is long and windy and complicated at times
» Celebrate the milestones along the way!

 Easy to get overwhelmed

. i 1% Zellic
Wisdom

 Hopefully to some extent you can start to “think like an attacker” w.r.t crypto
 Some advice: the road of learning is long and windy and complicated at times
» Celebrate the milestones along the way!
 Easy to get overwhelmed

 CTF should be about having fun, not stressing because you are stuck

A\

s Zellic

\3/
=/

Go
ge
tsomet
la
gs

o Zellic

https://ctf.urisc.club

https://ctf.urisc.club

