
~RISC 27/8/25

intro2rev
You had to be there for the attendance flag :)

Acknowledgment
of Country

RISC acknowledges the people of the Woi
Wurrung and Boon Wurrung language
groups of the eastern Kulin Nation on
whose unceded lands we conduct the
business of the University and the club.
RISC acknowledges their Ancestors and
Elders, past, present, and emerging

Today’s Sponsor…

Binary Ninja is an interactive decompiler,
disassembler, debugger, and binary analysis

platform built by reverse engineers, for reverse
engineers.

Developed with a focus on delivering a high-
quality API for automation and a clean and
usable GUI, Binary Ninja is in active use by
malware analysts, vulnerability researchers,

and software developers worldwide.

Decompile software built for many common
architectures on Windows, macOS, and Linux.

Hello, world!
baby steps

• We’ve all (hopefully) written hello world before

Hello, world!
baby steps

• We’ve all (hopefully) written hello world before

• Maybe in C?

Hello, world!
baby steps

• We’ve all (hopefully) written hello world before

• Maybe in C?

• “Compile” using gcc and then run

Hello, world!
baby steps

• We’ve all (hopefully) written hello world before

• Maybe in C?

• “Compile” using gcc and then run

• What actually happens here?

Hello, world!
baby steps

• We’ve all (hopefully) written hello world before

• Maybe in C?

• “Compile” using gcc and then run

• What actually happens here?

• Why can’t I just run hello_world.c?

Hello, world!
baby steps

• We’ve all (hopefully) written hello world before

• Maybe in C?

• “Compile” using gcc and then run

• What actually happens here?

• Why can’t I just run hello_world.c?

• What even is the hello_world file?

Hello, world!
baby steps

• file command tells us a lot

Hello, world!
baby steps

• file command tells us a lot

• ELF executable

Hello, world!
baby steps

• file command tells us a lot

• ELF executable

• Compiled for x86-64 CPUs

Hello, world!
baby steps

• file command tells us a lot

• ELF executable

• Compiled for x86-64 CPUs

• SYSV ABI

Hello, world!
baby steps

• file command tells us a lot

• ELF executable

• Compiled for x86-64 CPUs

• SYSV ABI

• Dynamically linked

Hello, world!
baby steps

• file command tells us a lot

• ELF executable

• Compiled for x86-64 CPUs

• SYSV ABI

• Dynamically linked

• Not stripped

Hello, world!
baby steps

• file command tells us a lot

• ELF executable

• Compiled for x86-64 CPUs

• SYSV ABI

• Dynamically linked

• Not stripped

???

CPU…
is

• Compiled for x86-64 CPUs

CPU…
is

• Compiled for x86-64 CPUs

• CPU → Central Processing Unit

CPU…
is

• Compiled for x86-64 CPUs

• CPU → Central Processing Unit

• Runs programs by executing instructions

CPU…
is

• Compiled for x86-64 CPUs

• CPU → Central Processing Unit

• Runs programs by executing instructions

• One instruction at a time, billions per second (GHz)

CPU…
as a machine

• CPU takes input (data)

Input

CPU

CPU…
as a machine

• CPU takes input (data)

• Follows a program (instructions)

Input

CPU

Program

CPU…
as a machine

• CPU takes input (data)

• Follows a program (instructions)

• Produces output (results)

Input

CPU

Program

Output

CPU…
as a machine

• CPU takes input (data)

• Follows a program (instructions)

• Produces output (results)

• That’s all!
Input

CPU

Program

Output

• Incredibly complex internal machinery

CPU…
in reality

Input

CPU

Program

Output

 RAM

CPU…
in reality

• Incredibly complex internal machinery

• Typically program and input refer to the same physical hardware (RAM)

Input

CPU

Program

Output

 RAM

CPU…
in reality

• Connect to multiple output devices (graphics, I/O devices, peripherals…)

Input

CPU Output

Program

Headset GPU

USB
Devices

WiFi /
Bluetooth

Card

 RAM

CPU…
in reality

• Connect to multiple output devices (graphics, I/O devices, peripherals…)

• And multiple input devices

Input

CPU Output

Program

Headset GPU

USB
Devices

WiFi /
Bluetooth

Card

Keyboard Mouse

Touchscreen

 RAM

CPU…
in reality

• Connect to multiple output devices (graphics, I/O devices, peripherals…)

• And multiple input devices

• Some devices can act as both

Input

CPU Output

Program

Headset GPU

USB
Devices

WiFi /
Bluetooth

Card

Keyboard Mouse

Touchscreen

 RAM

CPU…
in reality

• Connect to multiple output devices (graphics, I/O devices, peripherals…)

• And multiple input devices

• Some devices can act as both

Input

CPU Output

Program

Headset GPU

USB
Devices

WiFi /
Bluetooth

Card

Keyboard Mouse

Touchscreen

This is somewhat of an 
oversimplification, but I can only 
fit so many arrows on screen

 RAM

CPU…
in reality

• Connect to multiple output devices (graphics, I/O devices, peripherals…)

• And multiple input devices

• Some devices can act as both

Input

CPU Output

Program

Headset GPU

USB
Devices

WiFi /
Bluetooth

Card

Keyboard Mouse

Touchscreen

This is somewhat of an 
oversimplification, but I can only 
fit so many arrows on screen

CPU…
does as instructed

• Programs are sequences of simple1 instructions

CPU…
does as instructed

• Programs are sequences of simple1 instructions

1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
does as instructed

• Programs are sequences of simple1 instructions

• Move data around (mov, xchg, …)

1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
does as instructed

• Programs are sequences of simple1 instructions

• Move data around (mov, xchg, …)

• Perform arithmetic (add, sub, xor, …)

1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
does as instructed

• Programs are sequences of simple1 instructions

• Move data around (mov, xchg, …)

• Perform arithmetic (add, sub, xor, …)

• Compare values (cmp)

1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
does as instructed

• Programs are sequences of simple1 instructions

• Move data around (mov, xchg, …)

• Perform arithmetic (add, sub, xor, …)

• Compare values (cmp)

• Modify control flow (jmp, call, ret, jg, jle, …)

1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
does as instructed

• Programs are sequences of simple1 instructions

• Move data around (mov, xchg, …)

• Perform arithmetic (add, sub, xor, …)

• Compare values (cmp)

• Modify control flow (jmp, call, ret, jg, jle, …)

• Different CPUs have different instruction “sets” (ISA)

1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
does as instructed

• Programs are sequences of simple1 instructions

• Move data around (mov, xchg, …)

• Perform arithmetic (add, sub, xor, …)

• Compare values (cmp)

• Modify control flow (jmp, call, ret, jg, jle, …)

• Different CPUs have different instruction “sets” (ISA)

• We will focus on x86/x64 in this talk, but challenges may involve MIPS, ARM, …
1 instructions like VGF2P8AFFINEINVQB are the exception

CPU…
has “registers”

• CPU keeps a set of internal “registers” that hold N-bit values

CPU…
has “registers”

• CPU keeps a set of internal “registers” that hold N-bit values

• RAX, RBX, RCX, RDX, RSI, RDI, R8→R15, RIP, CS, DS, ES, FS, GS, EFLAGS, …

CPU…
has “registers”

• CPU keeps a set of internal “registers” that hold N-bit values

• RAX, RBX, RCX, RDX, RSI, RDI, R8→R15, RIP, CS, DS, ES, FS, GS, EFLAGS, …

• Some registers have special purposes (RIP, RSP, CS/DS/ES/…, EFLAGS, …)

CPU…
has “registers”

• CPU keeps a set of internal “registers” that hold N-bit values

• RAX, RBX, RCX, RDX, RSI, RDI, R8→R15, RIP, CS, DS, ES, FS, GS, EFLAGS, …

• Some registers have special purposes (RIP, RSP, CS/DS/ES/…, EFLAGS, …)

• Registers are much faster than RAM

CPU…
has “registers”

• CPU keeps a set of internal “registers” that hold N-bit values

• RAX, RBX, RCX, RDX, RSI, RDI, R8→R15, RIP, CS, DS, ES, FS, GS, EFLAGS, …

• Some registers have special purposes (RIP, RSP, CS/DS/ES/…, EFLAGS, …)

• Registers are much faster than RAM

• Say we want to compute (x + 7) * 2 + 14

CPU…
has “registers”

• CPU keeps a set of internal “registers” that hold N-bit values

• RAX, RBX, RCX, RDX, RSI, RDI, R8→R15, RIP, CS, DS, ES, FS, GS, EFLAGS, …

• Some registers have special purposes (RIP, RSP, CS/DS/ES/…, EFLAGS, …)

• Registers are much faster than RAM

• Say we want to compute (x + 7) * 2 + 14

• Much faster to load X to a register and operate on that register

CPU…
instruction syntax

• Two main conventions:

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

• AT&T Syntax - <op> <src> <dst>

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

• AT&T Syntax - <op> <src> <dst>

• Also prefix registers with %, constants with $

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

• AT&T Syntax - <op> <src> <dst>

• Also prefix registers with %, constants with $

mov rax, 2
add rax, 3
imul rax, 5

Intel

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

• AT&T Syntax - <op> <src> <dst>

• Also prefix registers with %, constants with $

mov rax, 2
add rax, 3
imul rax, 5

movq $2, %rax
addq $3, %rax
imulq $5, %rax

Intel AT&T

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

• AT&T Syntax - <op> <src> <dst>

• Also prefix registers with %, constants with $

We will use Intel syntax for our 
workshops, but it is entirely 
personal preference

mov rax, 2
add rax, 3
imul rax, 5

movq $2, %rax
addq $3, %rax
imulq $5, %rax

Intel AT&T

CPU…
instruction syntax

• Two main conventions:

• Intel Syntax - <op> <dst> <src>

• AT&T Syntax - <op> <src> <dst>

• Also prefix registers with %, constants with $

We will use Intel syntax for our 
workshops, but it is entirely 
personal preference

mov rax, 2
add rax, 3
imul rax, 5

movq $2, %rax
addq $3, %rax
imulq $5, %rax

Intel AT&T
What is the value of rax 
after this program?

CPU…
instruction syntax

mov rax, 2
add rax, 3
imul rax, 5

CPU…
instruction syntax

mov rax, 2
add rax, 3
imul rax, 5

Move the value 2 into rax rax = 2

CPU…
instruction syntax

mov rax, 2
add rax, 3
imul rax, 5

Move the value 2 into rax rax = 2

Add the value 3 to rax rax = 5

CPU…
instruction syntax

mov rax, 2
add rax, 3
imul rax, 5

Move the value 2 into rax rax = 2

Add the value 3 to rax rax = 5

Multiply rax by 5 rax = 25

• Sometimes we want to do X if Y

CPU…
control flow

• Sometimes we want to do X if Y

• Make cake if have ingredients

CPU…
control flow

• Sometimes we want to do X if Y

• Make cake if have ingredients

CPU…
control flow

• Sometimes we want to do X if Y

• Make cake if have ingredients

CPU…
control flow

CPU…
control flow

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

CPU…
control flow

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

Function entry

CPU…
control flow

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

Set up stack 
(more on this later!)

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

Compare x to 5

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

If not equal (ne), jump (j) 
to instruction at 0x18

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

True branch

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

Jump to instruction 
at address 0x1d

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

False branch

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

Leave function 
(return value is 
stored in rax)

control flow
CPU…

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>
 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>
 18:	 mov eax, 0x0
 1d:	 pop rbp
 1e:	 ret

Leave function 
(return value is 
stored in rax)

This kinda sucks to 
read, doesn’t it?

control flow graphs
CPU…

 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>

 1d:	 pop rbp
 1e:	 ret

 18:	 mov eax, 0x0

control flow graphs
CPU…

 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>

 1d:	 pop rbp
 1e:	 ret

 18:	 mov eax, 0x0

Graph view lets 
us understand 
the program in 
small isolated 

sections

control flow graphs
CPU…

 11:	 mov eax, 0x1
 16:	 jmp 1d <foo+0x1d>

 0:	 endbr64
 4:	 push rbp
 5:	 mov rbp, rsp
 8:	 mov DWORD PTR [rbp-0x4], edi
 b:	 cmp DWORD PTR [rbp-0x4], 0x5
 f:	 jne 18 <foo+0x18>

 1d:	 pop rbp
 1e:	 ret

 18:	 mov eax, 0x0

Graph view lets 
us understand 
the program in 
small isolated 

sections

Binary Ninja can 
do this for us :)

Binary Ninja

Binary Ninja

Binary Ninja

What if we could turn
assembly → C style code?

Binary Ninja

Binary Ninja

Binary Ninja
Decompilation

• Key things to note:

Binary Ninja
Decompilation

• Key things to note:

• Variable names are lost

Binary Ninja
Decompilation

• Key things to note:

• Variable names are lost

• Exact source structure is lost

Binary Ninja
Decompilation

• Key things to note:

• Variable names are lost

• Exact source structure is lost

• Comments are lost

Binary Ninja
Decompilation

• Key things to note:

• Variable names are lost

• Exact source structure is lost

• Comments are lost

• Function names may be lost

Binary Ninja
Decompilation

• Key things to note:

• Variable names are lost

• Exact source structure is lost

• Comments are lost

• Function names may be lost

• Decompilation is not an exact science

Binary Ninja
Decompilation

• Key things to note:

• Variable names are lost

• Exact source structure is lost

• Comments are lost

• Function names may be lost

• Decompilation is not an exact science

• But it is still immensely helpful to understand how a program works :)

What if function names are
missing?

Reverse Engineering
Making sense of things

• I’ve “stripped” a binary of it’s symbols, removing any function name info

Reverse Engineering
Making sense of things

• I’ve “stripped” a binary of it’s symbols, removing any function name info

Reverse Engineering
Making sense of things

• I’ve “stripped” a binary of it’s symbols, removing any function name info

Reverse Engineering
Making sense of things

• I’ve “stripped” a binary of it’s symbols, removing any function name info
Some functions are “imported” 
from other places

We will still have names for these

Reverse Engineering
Making sense of things

• I’ve “stripped” a binary of it’s symbols, removing any function name info
But functions that are part of 
this program won’t have a 
name associated with them

Reverse Engineering
Making sense of things

• I’ve “stripped” a binary of it’s symbols, removing any function name info
We need to figure out what 
this function does, and give 
it a name ourselves :)

Copy arg1 to some buffer

Do some stuff on that buffer

See if it matches 
this constant

Copy arg1 to some buffer

Do some stuff on that buffer

See if it matches 
this constant

???

Optimised signed 
integer halving

Optimised signed 
integer halving

Go test things out 
in python if you’re 
unsure

Loop exit

Swap the ith character 
with the ith last one

string reversal!

string reversal!

Checks if the character is alphanumeric

in C this would be isAlpha

Shifts every character by 1!

Decompilation is not 1:1

Memory...
... can be used as a stack

• From before: mov DWORD PTR [rbp-0x4], edi

Memory...
... can be used as a stack

• From before: mov DWORD PTR [rbp-0x4], edi

• What's going on here?

Memory...
... can be used as a stack

• From before: mov DWORD PTR [rbp-0x4], edi

• What's going on here?

• This is putting an item (edi) into some location in the stack (rbp-0x4)

Memory...
... can be used as a stack

• From before: mov DWORD PTR [rbp-0x4], edi

• What's going on here?

• This is putting an item (edi) into some location in the stack (rbp-0x4)

• What is a stack?

Memory...
... can be used as a stack

• From before: mov DWORD PTR [rbp-0x4], edi

• What's going on here?

• This is putting an item (edi) into some location in the stack (rbp-0x4)

• What is a stack?

• What is rbp?

Memory...
... can be used as a stack

• From before: mov DWORD PTR [rbp-0x4], edi

• What's going on here?

• This is putting an item (edi) into some location in the stack (rbp-0x4)

• What is a stack?

• What is rbp?

• Why haven't I mentioned rsp?

Memory...
... can be used as a stack

• The "stack" is a section of memory used during execution

Memory...
... can be used as a stack

• The "stack" is a section of memory used during execution

• Every function allocates it's own stack space on entry

Memory...
... can be used as a stack

• The "stack" is a section of memory used during execution

• Every function allocates it's own stack space on entry

• and thus returns it back to it's previous state on exit

Memory...
... can be used as a stack

• The "stack" is a section of memory used during execution

• Every function allocates it's own stack space on entry

• and thus returns it back to it's previous state on exit

• Allows for push/pop from the "top" of the stack (much like the ADT)

Memory...
... can be used as a stack

Address Value

0

8

16

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

Memory...
... can be used as a stack

Address Value

0 0x41

8

16

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

Memory...
... can be used as a stack

Address Value

0 0x41

8

16

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x43

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x43

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x44

24

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x44

24 0x45

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x44

24 0x45

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x44

24 0x45

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x45

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32 0x48

40stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32 0x48

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44
edx: 0x48

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32 0x48

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44
edx: 0x48
esi: 0x47

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32 0x48

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44
edx: 0x48
esi: 0x47
edi: 0x48

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32 0x48

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44
edx: 0x48
esi: 0x47
edi: 0x48
ebp: 0x42

Memory...
... can be used as a stack

Address Value

0 0x41

8 0x42

16 0x46

24 0x47

32 0x48

40

stack pointer

push 0x41
push 0x42
push 0x43
pop eax
push 0x44
push 0x45
pop ebx
pop ecx
push 0x46
push 0x47
push 0x48
pop edx
pop esi
pop edi
pop ebp

eax: 0x43
ebx: 0x45
ecx: 0x44
edx: 0x48
esi: 0x47
edi: 0x48
ebp: 0x42

esp/rsp

Memory...
...needs to be function local

• "Every function allocates it's own stack space on entry"

Memory...
...needs to be function local

• "Every function allocates it's own stack space on entry"

• How is this accomplished?

Memory...
...needs to be function local

• "Every function allocates it's own stack space on entry"

• How is this accomplished?

• Start of function (prologue) sets up a "frame"

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Memory...
...needs to be function local

• "Every function allocates it's own stack space on entry"

• How is this accomplished?

• Start of function (prologue) sets up a "frame"

• End of function (epilogue) goes back to the previous (caller's) frame

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

mov	 rsp, rbp
pop	 rbp
ret

prologue epilogue

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack
rsp

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rsp
Caller's rbp

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rsp,rbp
Caller's rbp

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rbp
Caller's rbp

rsp

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rbp
Caller's rbp

rsp

N

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rbp
Caller's rbp

rsp

N Stack Frame

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rbp
Caller's rbp

rsp

N Stack Frame

mov DWORD PTR [rbp-0x4], edi

Memory...
...needs to be function local

push	 rbp
mov	 rbp, rsp
sub	 rsp, N

prologue

Stack

rbp
Caller's rbp

rsp

N Stack Frame

mov DWORD PTR [rbp-0x4], edi

edi-0x4

Memory...
...needs to be function local

mov	 rsp, rbp
pop	 rbp
ret

epilogue

Stack

rbp
Caller's rbp

rsp

Stack Frame

Memory...
...needs to be function local

mov	 rsp, rbp
pop	 rbp
ret

epilogue

Stack

rbp
Caller's rbp

rsp,

Memory...
...needs to be function local

mov	 rsp, rbp
pop	 rbp
ret

epilogue

Stack
rsp

Memory...
...needs to be function local

mov	 rsp, rbp
pop	 rbp
ret

epilogue

Stack
rsp

return to caller

Memory...
...needs to be function local

mov	 rsp, rbp
pop	 rbp
ret

epilogue

Stack
rsp

After a function call returns, 
the stack of the previous 
function remains unchanged

Memory...
...needs to be function local

mov	 rsp, rbp
pop	 rbp
ret

epilogue

Stack
rsp

After a function call returns, 
the stack of the previous 
function remains unchanged

rsp/rbp should remain exactly 
as they were before and after 
the function call

Decompilation...
... can fail

• Certain tricks can be used to trip up a decompiler

Decompilation...
... can fail

• Certain tricks can be used to trip up a decompiler

• Some decompilers will fail if the previous invariant cannot be statically proven

Decompilation...
... can fail

• Certain tricks can be used to trip up a decompiler

• Some decompilers will fail if the previous invariant cannot be statically proven

• rsp/rbp should remain exactly as they were before and after the function call

Decompilation...
... can fail

• Certain tricks can be used to trip up a decompiler

• Some decompilers will fail if the previous invariant cannot be statically proven

• rsp/rbp should remain exactly as they were before and after the function call

• Can we prevent this invariant from being proven?

Decompilation...
... can fail

...prologue

	 call	 MyFunc
	 cmp	 rax, 0
	 jz	 CONTINUE
	 add	 rsp, 4
CONTINUE:
	 pop	 rax

...rest of function

Decompilation...
... can fail

...prologue

	 call	 MyFunc
	 cmp	 rax, 0
	 jz	 CONTINUE
	 add	 rsp, 4
CONTINUE:
	 pop	 rax

...rest of function

• Let's say that MyFunc always returns 0

Decompilation...
... can fail

...prologue

	 call	 MyFunc
	 cmp	 rax, 0
	 jz	 CONTINUE
	 add	 rsp, 4
CONTINUE:
	 pop	 rax

...rest of function

• Let's say that MyFunc always returns 0

• rax=0 after call

Decompilation...
... can fail

...prologue

	 call	 MyFunc
	 cmp	 rax, 0
	 jz	 CONTINUE
	 add	 rsp, 4
CONTINUE:
	 pop	 rax

...rest of function

• Let's say that MyFunc always returns 0

• rax=0 after call

• Does the decompiler know that MyFunc
always returns 0?

Decompilation...
... can fail

...prologue

	 call	 MyFunc
	 cmp	 rax, 0
	 jz	 CONTINUE
	 add	 rsp, 4
CONTINUE:
	 pop	 rax

...rest of function

• Let's say that MyFunc always returns 0

• rax=0 after call

• Does the decompiler know that MyFunc
always returns 0?

• hint: depending on the decompiler,
maybe/maybe not

Decompilation...
... can fail

...prologue

	 call	 MyFunc
	 cmp	 rax, 0
	 jz	 CONTINUE
	 add	 rsp, 4
CONTINUE:
	 pop	 rax

...rest of function

• Let's say that MyFunc always returns 0

• rax=0 after call

• Does the decompiler know that MyFunc
always returns 0?

• hint: depending on the decompiler,
maybe/maybe not

• Decompiler cannot statically prove that 
add rsp, 4  
will not get executed

Decompilation...
... can fail

Stack
rspAfter a function call returns, 

the stack of the previous 
function remains unchanged

rsp/rbp should remain exactly 
as they were before and after 
the function call

rsp+0x4

Decompiler may not be able to prove 
statically which value will be held in 
the stack pointer after function exit

Decompilation...
... can fail in multiple ways

• There are an endless list of anti-decompiler tricks

Decompilation...
... can fail in multiple ways

• There are an endless list of anti-decompiler tricks

• No time to cover all of them

Decompilation...
... can fail in multiple ways

• There are an endless list of anti-decompiler tricks

• No time to cover all of them

• Expect some on the challenges :)

Have a break :)

Debuggers…
… let you have full introspection

• A tool that lets you control/observe a program while it runs

Debuggers…
… let you have full introspection

• A tool that lets you control/observe a program while it runs

• Inspect what’s happening “under the hood”

Debuggers…
… let you have full introspection

• A tool that lets you control/observe a program while it runs

• Inspect what’s happening “under the hood”

• Step through instructions (or source lines) one at a time

Debuggers…
… let you have full introspection

• A tool that lets you control/observe a program while it runs

• Inspect what’s happening “under the hood”

• Step through instructions (or source lines) one at a time

• Observe memory, registers, local variables, …

Debuggers…
… are really useful

• Static reversing only gets you so far

Debuggers…
… are really useful

• Static reversing only gets you so far

• Debuggers let you examine runtime behaviour

Debuggers…
… are really useful

• Static reversing only gets you so far

• Debuggers let you examine runtime behaviour

• See real values of variables

Debuggers…
… are really useful

• Static reversing only gets you so far

• Debuggers let you examine runtime behaviour

• See real values of variables

• See what functions return

Debuggers…
… are really useful

• Static reversing only gets you so far

• Debuggers let you examine runtime behaviour

• See real values of variables

• See what functions return

• Understand which branches your input causes the program to take

GDB Demo

GDB
Cheat sheet

Start gdb ./my_prog Show backtrace/frame (gdb) bt
(gdb) frame

Set breakpoint (gdb) b my_func
(gdb) b *0x400284 Inspect registers (gdb) info reg

Step into (gdb) step
(gdb) s Inspect memory (gdb) x/s address

(gdb) x/20gx $rsp

Step over (gdb) next
(gdb) n Disassemble (gdb) disas

(gdb) x/20i $rip

Step until function exit (gdb) finish
(gdb) fin Watch variable/memory (gdb) watch varname

Continue until program
stops (i.e., breakpoint)

(gdb) continue
(gdb) c Quit (gdb) q

Anti debug tricks
cat and mouse

• There are multiple ways for a program to detect if it is being run under a
debugger

Anti debug tricks
cat and mouse

• There are multiple ways for a program to detect if it is being run under a
debugger

• On Linux, one such technique is using ptrace

Anti debug tricks
cat and mouse

• There are multiple ways for a program to detect if it is being run under a
debugger

• On Linux, one such technique is using ptrace

Anti debug tricks
cat and mouse

Anti debug tricks
cat and mouse

Anti debug tricks
cat and mouse

Anti debug tricks
cat and mouse

Anti debug tricks
cat and mouse

• Many such techniques

Anti debug tricks
cat and mouse

• Many such techniques

• Runtime .text CRC computation

Anti debug tricks
cat and mouse

• Many such techniques

• Runtime .text CRC computation

• int3 (debugger trap)

Anti debug tricks
cat and mouse

• Many such techniques

• Runtime .text CRC computation

• int3 (debugger trap)

• /proc/self/status (TracerPid)

Anti debug tricks
cat and mouse

• Many such techniques

• Runtime .text CRC computation

• int3 (debugger trap)

• /proc/self/status (TracerPid)

• This talk is already very long, so I’ll leave learning these as an exercise to you

Anti debug tricks
cat and mouse

• Many such techniques

• Runtime .text CRC computation

• int3 (debugger trap)

• /proc/self/status (TracerPid)

• This talk is already very long, so I’ll leave learning these as an exercise to you

• You can always find a way around these (i.e., patch the program)

Packers...
... pack stuf

• Executables can get pretty big

Packers...
... pack stuf

• Executables can get pretty big

• Packers exist to compress an executable into a smaller binary

Packers...
... pack stuf

• Executables can get pretty big

• Packers exist to compress an executable into a smaller binary

• Resulting binary is compressed payload + decompressor

Packers...
... pack stuf

• Executables can get pretty big

• Packers exist to compress an executable into a smaller binary

• Resulting binary is compressed payload + decompressor

• At runtime, decompresses payload and jumps to it

Packers...
... pack stuf

• Executables can get pretty big

• Packers exist to compress an executable into a smaller binary

• Resulting binary is compressed payload + decompressor

• At runtime, decompresses payload and jumps to it

• Common in malware and some “commercial software protection solutions”

Packers...
... pack stuf

• Executables can get pretty big

• Packers exist to compress an executable into a smaller binary

• Resulting binary is compressed payload + decompressor

• At runtime, decompresses payload and jumps to it

• Common in malware and some “commercial software protection solutions”

• You can typically recognise the use of a packer from strings

Packers...
... pack stuf

• Executables can get pretty big

• Packers exist to compress an executable into a smaller binary

• Resulting binary is compressed payload + decompressor

• At runtime, decompresses payload and jumps to it

• Common in malware and some “commercial software protection solutions”

• You can typically recognise the use of a packer from strings

• “This file is packed with the UPX executable packer”

Packers...
... pack stuf

Original Program

Packers...
... pack stuf

Original Program Packer

Packers...
... pack stuf

Original Program Packer
Compressed Program

Packers...
... pack stuf

Original Program Packer
Compressed Program

Decompressor

Packers...
... also unpack stuf

Compressed Program

Decompressor

Memory / RAM

Packers...
... also unpack stuf

Compressed Program

Decompressor

Memory / RAM

Decompression

Packers...
... also unpack stuf

Compressed Program

Decompressor

Memory / RAM

Decompression Original Program

Packers...
... also unpack stuf

Compressed Program

Decompressor

Memory / RAM

Decompression Original Program

Packing software usually provides 
a way to decompress a binary 
 
i.e. upx -d

Packers...
... pack and unpack things

• A lot of packers exist

Packers...
... pack and unpack things

• A lot of packers exist

• Yoda

Packers...
... pack and unpack things

• A lot of packers exist

• Yoda

• UPX

Packers...
... pack and unpack things

• A lot of packers exist

• Yoda

• UPX

• 20to4

Packers...
... pack and unpack things

• A lot of packers exist

• Yoda

• UPX

• 20to4

• eXPressor

Packers...
... pack and unpack things

• A lot of packers exist

• Yoda

• UPX

• 20to4

• eXPressor

• Some may offer password protection, encryption, etc

Packers...
... pack and unpack things

• A lot of packers exist

• Yoda

• UPX

• 20to4

• eXPressor

• Some may offer password protection, encryption, etc

• Another “exercise to the reader” to go and learn more

Obfuscaters...
... make your life harder

• Obfuscation is the process of transforming code so it’s harder to read but still
does the same thing

Obfuscaters...
... make your life harder

• Obfuscation is the process of transforming code so it’s harder to read but still
does the same thing

• Goal: frustrate reverse engineers (you!)

Obfuscaters...
... make your life harder

• Obfuscation is the process of transforming code so it’s harder to read but still
does the same thing

• Goal: frustrate reverse engineers (you!)

• Commonly used in malware, DRM,

Obfuscaters...
... make your life harder

• Obfuscation is the process of transforming code so it’s harder to read but still
does the same thing

• Goal: frustrate reverse engineers (you!)

• Commonly used in malware, DRM, and CTFs :^)

Obfuscaters...
... why?

• Hide algorithms, secret constants (decryption keys, flags)

Obfuscaters...
... why?

• Hide algorithms, secret constants (decryption keys, flags)

• Slow down reverse engineers

Obfuscaters...
... why?

• Hide algorithms, secret constants (decryption keys, flags)

• Slow down reverse engineers

• Avoid threat detection (less common)

Obfuscaters...
... why?

• Hide algorithms, secret constants (decryption keys, flags)

• Slow down reverse engineers

• Avoid threat detection (less common)

• Increase cost of defence

Obfuscaters...
... how? - control flow flattening

• Turn neat control flow structures into spaghetti mess

Obfuscaters...
... how? - control flow flattening

• Turn neat control flow structures into spaghetti mess

Obfuscaters...
... how? - control flow flattening

• Turn neat control flow structures into spaghetti mess

Obfuscaters...
... how? - control flow flattening

• Turn neat control flow structures into spaghetti mess

Both of these return 1 if x == 5

Obfuscaters...
... how? - control flow flattening

• Turn neat control flow structures into spaghetti mess

Both of these return 1 if x == 5

But this is much harder 
to reason about

Obfuscaters...
... how? - string encryption

• Encrypt all strings, and only decrypt when that string is used

Obfuscaters...
... how? - string encryption

• Encrypt all strings, and only decrypt when that string is used

Obfuscaters...
... how? - string encryption

• Encrypt all strings, and only decrypt when that string is used

Obfuscaters...
... how? - string encryption

• Encrypt all strings, and only decrypt when that string is used

Both will print the same thing

Obfuscaters...
... how? - string encryption

• Encrypt all strings, and only decrypt when that string is used

Both will print the same thing

But this is harder 
to reason about

Obfuscaters...
... how?

• Non exhaustive list, of course

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

• … to reducing the entire program down to a single instruction (MOV)

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

• … to reducing the entire program down to a single instruction (MOV)

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

• … to reducing the entire program down to a single instruction (MOV)

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

• … to reducing the entire program down to a single instruction (MOV)

Obfuscaters...
... how?

• Non exhaustive list, of course

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

• … to reducing the entire program down to a single instruction (MOV)

Obfuscaters...
... how?

• Non exhaustive list, of course

• Can range from simple string encryption…

• … to reducing the entire program down to a single instruction (MOV)

• M/o/Vfuscator - xoreaxeax

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

• Constraints can be reduced down into boolean algebra

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

• Constraints can be reduced down into boolean algebra

• SMT solvers find solutions to these equations

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

• Constraints can be reduced down into boolean algebra

• SMT solvers find solutions to these equations

• i.e., finding X such that Y

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

• Constraints can be reduced down into boolean algebra

• SMT solvers find solutions to these equations

• i.e., finding X such that Y

• Simple example:

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

• Constraints can be reduced down into boolean algebra

• SMT solvers find solutions to these equations

• i.e., finding X such that Y

• Simple example: 
 
If (a * 3 + b == 42 && (a ^ b) == 7) {
 win();
}

Bonus: SMT solvers

• Many reversing problems boil down to “Find input X that satisfies constraints Y”

• Constraints can be reduced down into boolean algebra

• SMT solvers find solutions to these equations

• i.e., finding X such that Y

• Simple example: 
 
If (a * 3 + b == 42 && (a ^ b) == 7) {
 win();
}

Exercise for the reader :)

Questions?

Tools that you should go and learn

• strings

• Binary Ninja

• objdump

• binwalk

• file

• gdb

• nc

https://forms.office.com/r/3L9rMBd2iQ

Feedback

https://forms.office.com/r/3L9rMBd2iQ

ctf.urisc.club

http://ctf.urisc.club

